

MVD requirements & simulations

TAG Tracking

Fabian Hügging, IKP 1, Forschungszentrum Jülich

MVD Design: Rev 14b

- ~540 modules in 4 barrel & 6 disk layers
 - Geometry:
 - pixel barrels at R= 27; 50 mm
 - strip barrels at R= 75; 125 mm
 - 2 single sided pixel disks at Z= 20; 40 mm
 - 4 double sided mixed disks at Z =60; 85; 145; 185 mm
 - closest distance to beam-pipe: 2 mm (disks)
 - overall length: 40 cm
 - 140 pixel modules
 - 0.15 m² active silicon
 - ~6.5 Mio readout channels
 - 400 strip modules
 - 0.5 m² active silicon
 - ~70,000 readout channels
 - 2 kW power dissipation inside the MVD

2 5-Dec-06

Fabian Hügging, IKP 1, Forschungszentrum Jülich

Basic requirements for MVD: pixel

- spatial resolution in r-phi → < 100µm (for momentum measurement)
- spatial resolution in z → < 100µm (especially for D-tagging)
- time resolution → < 50ns (for separation of 'DC'-beam 10⁷ events/s)
- triggerless readout → track rate up to 720 kHz (peak) and 54 kHz (average) per chip of size 7.6x8.2mm²
- low material → < 1.2 % per layer (for low momentum particle tracking)
- modest radiation hardness → ~3x10¹⁴ n_{eq} / cm²
- moderate occupancy → up to 16 kHz (peak) and 350 Hz (average) for 50x400µm²
- amplitude measurement → dE/dx for particle identification

Basic requirements for MVD: strip

- spatial resolution in r-phi → < 100µm (for momentum measurement), to be confirmed by simulations.
- spatial resolution in $z \rightarrow < 100 \mu m$, to be confirmed
- time resolution → at least < 50ns (for separation of 'DC'beam 10⁷ events/s); better < 2ns (for DAQ event deconvolution and ToF)
- triggerless readout → simulations underway
- occupancy → simulations underway
- low material → < 1% per layer (for low momentum particle tracking)
- modest radiation hardness → ~10¹⁴ n_{eq} / cm²
- amplitude measurement → dE/dx for particle identification

Simulations: defining FE electronics

- Data loads (strip and pixel part)
 - rates & rate distributions peak rates, average rates
 - energy deposit global and locally, peak and average → define dynamic range
- Channels: background pp & pA FoM: track rate, hit rate, data rate, occupancy & dynamic range
- time structure and ordering (strip and pixel part)
 - Iatency distributions
 - beam fluctuations on various timescales
 - overlapping of events

Channels: background pp & pA FoM: time resolution, occupancy & dynamic range of timing informations

Note: these simulations need input/interactions with dedicated electronics simulations!

Simulations: geometry optimization (1)

- variation of pixel size and shapes
 - [50x400 μm²]; 100x100 μm²; 50x200 μm²; 200x50 μm²
 - different relative orientations of layers
- Channel: $\bar{p}p \rightarrow \bar{D}D$ FoM: position resolution & vertex resolution
- strip optimization
 - modules size and shape rectangular vs wedge for the disks
 - pitch sizes

Channel: $\bar{p}p \rightarrow \bar{D}D$ FoM: position resolution & vertex resolution

- positions of forward disks and barrels → 'strangeness layout' vs.
 'charm layout'
 - number and position of disks
 - Layout of disks only pixel, mixture of strips and pixel
 - barrel layer radii

Channels: $\bar{p}p \rightarrow \bar{D}D$, $\bar{p}p \rightarrow \Lambda\Lambda$ FoM: secondary vertex resolution, momentum resolution (?)

Simulations: geometry optimization (2)

- variation of sensor thickness (strips and pixels)
 - 200 μm 100 μm

Channels: $\bar{p}p \rightarrow \bar{D}D$ FoM: position resolution, signal resolution, dE/dx resolution

- sensor sizes and shapes (to optimize material)
 - size and dead zone ratio (for pixel)
 - arrangement options: overlap layout vs straight layout (for pixel and strip)

Channels: $\bar{p}p \rightarrow \bar{D}^*D^*$ FoM: position resolution, momentum resolution, vertex resolution

- structural support, services (cables, cooling,...)
 - different inhomogeneous distributions
 - identify areas to put things

Channels: $\bar{p}p \rightarrow \bar{D}^*D^*$ FoM: position resolution, momentum resolution, vertex resolution

- other layout option
 - effect of target pipe hole
 - constant radius vs. constant angle for beam pipe

Channels: $\bar{p}p \rightarrow \bar{D}^*D^*$ FoM: position resolution, momentum resolution, vertex resolution

Simulations: optimization of performance goals

- optimize \overline{D}^*D^* ($\overline{D}D$) resolving power
 - input needed: efficiency / purity requirements to be settled!
 - Imited amount of variation, strategy:

 \rightarrow key parameters to be defined after basic geometry optimization!

→ keep a number of constraints that are already "established"

 \rightarrow respect boundary conditions!

→ optimize \overline{D}^*D^* (or $\overline{D}D$), then check background performance

Channels: $\bar{p}p \rightarrow \bar{D}D$ and $\bar{p}p \rightarrow \bar{D}^*D^*$ FoM: D* and D-tag efficiency and purity, secondary vertex resolution

