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1 Introduction

The P̄ANDA ([1]) PID TAG (Particle Identification Technical Assessment Group) was installed to
give to the collaboration a complete set of parameters for the evaluation of the optimal combination
of particle detectors.
The task given to this TAG is described in more detail:

Subject

– Requirements from physics

– Evaluate potential of each subsystem

– Matching of systems

Deliverables

– Definition of global PID scheme

– Optimized set of detectors and parameters

This list reflects roughly the structure of the PID TAG work and of this report. In an additional
subsection the tools available for the PID TAG work are presented and explained (see also [2]) .
The PID TAG evaluated the necessity of mapping the ”Separation Power” in dependence of the
momentum and the polar angle of the reaction products which is described in section 4.1. Since
a ”full simulation” was not available to calculate the performance of all the sub detectors, the
TAG gathered parameterizations of the single sub detectors which went into a ”Fast Simulation”
explained in section 4.3. For single physics channels a ”Full Simulation” was used.

Amongst others some important questions to solve were:

• PID informations from the Central Tracker (Straw Tube Tracker (STT) or Time Projection
Chamber (TPC))

• PID with and without a Barrel ToF detector

• PID with and without Forward End cap Cherenkov, and with different designs (Focusing
Disc DIRC, Time of Propagation Disc DIRC and Proximity RICH)

• PID with and without a Forward RICH

For special subjects experts were asked to present informations in the meeting or to give answers
to questions which arose.

The members of the TAG and their special responsibilities are listed at the end of the document
(section 9).
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2 Physics Requirements

The HESR (High Energy Storage Ring) of the new FAIR (Facility for antiproton and Ion Research)
project provides an antiproton beam of high resolution (down to ∆p = 1 × 10−5) and intensity
from 1.5 GeV/c to 15 GeV/c momentum.

This offers the unique possibility of investigating a broad field of physics. The vast variety of reac-
tion types from meson-production over Charmonium decays to Hyper nuclear reactions demands
a complete and compact detector system.

The physics requirements to the detectors are:

• to cover the full angular range of the physics products

• to detect all momenta of the reaction products

• to separate particle types with a defined level of separation over the full range of momenta
of the reaction products.

The full solid angle can only be covered by the full set of detectors. Sometimes the momentum
coverage has to be fulfilled by a combination of two or even three sub detectors.

The rich experimental program can only be pursued with a universal and hermetic detector capable
of detecting charged and neutral particles with nearly 4π solid angle coverage and high resolution.
The basic elements are:

Hidden-charm physics and the search for exotics require the concurrent detection of lepton
pairs as well as good kaon identification and high efficiency for open-charm final states. In
addition, the detection of low energy photons, either from radiative decays and/or back-
ground channels, is extremely important. The same, muon detection capability and a
highly-segmented low-threshold electromagnetic calorimeter are important for the tagging
and precise reconstruction of hidden-charm and the reduction of background. Good vertex
recognition and particle identification for charged kaons from very low energies up to a few
GeV/c is mandatory to reconstruct light hadronic and open charm final states.

The detector must withstand a large radiation dosage from hadrons emitted from the spalla-
tion process when using nuclear targets. The spallation products are dominated by neutrons
down to thermal energies.

The specific demands for experiments with a secondary target require good detection of
antihyperons and low momentum K+ in the forward region. A compact high resolution
solid state tracker for absorption and tracking of low momentum hyperons at large angles is
needed. The geometry of the secondary target is determined by the short mean life time of
the Ξ− of only 0.164 ns. A high resolution and high efficiency Ge-array for γ-ray detection
is envisaged in order to measure radiative transitions.

Open-charm spectroscopy and electromagnetic reactions have similar demands as are envis-
aged in the hidden-charm and exotics programs that the decay of a charmed hadron releases
rather high pt (up to 1.5 GeV/c) as compared to light and even strange meson decays. This
leads to large opening angles of particles in the laboratory reference frame.
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At P̄ANDA 2×107 reactions per second with 2.5 to 3.8 charged particle tracks for 2 and 15 GeV/c
respectively have to be digested by the detectors.

Most of the channels of interest are expected to have very low cross sections which are typically
in the order of nb or pb. Due to the fact that the total pp cross section is more than 40 mb in the
energy regime of the PANDA measurements, a good background rejection power is mandatory. The
most important criteria for the distinction between the signals and the huge amount of background
events are in general

• the kinematics, which is especially very helpful for exclusive measurements,

• the accurate reconstruction of decay vertices for particles like D or D∗ mesons, and

• an efficient and clean identification of the different particle species.

The necessity of a powerful particle identification with the PANDA detector becomes more clear
with Table 1. This table shows a comparison between the cross sections of some channels which
are planned to be measured with PANDA and of the corresponding major background modes. It
should be noted that most of the numbers are based on assumptions only. Due to the fact that
the branching ratios of some specific decay modes are very small a rejection power of up to 1012

has to be achieved. For these channels detailed feasibility studies have already been done and the
results are summarized in the PANDA Physics Book [3].

The identification of the different final states has to be provided by single subdetectors or groups
of subdetectors described in the following section.

3 PID Subsystems

The different behavior of charged particles traversing active and passive detector material can be
used to identify (on a probabilistic level) the nature of a charged particle. The PID detectors used
in PANDA take advantage of the following effects:

• Specific Energy Loss. The mean energy loss of charged particles per unit length, usually
referred to as dE/dx, is described by the Bethe-Bloch equation which depends on the velocity
rather than momentum of the charged particle.

• Cherenkov Effect. Charged particles in a medium with refractive index n propagating
with velocity β > 1/n emit radiation at an angle ΘC = arccos(1/nβ) with ΘC being the
Cherenkov angle. Thus, the mass of the detected particle can be determined by combining
the velocity information obtained from ΘC with momentum information from the tracking
detectors.

• Time-of-flight. Particles with the same momentum, but different masses travel with different
velocities, thus reaching a time-of-flight counter at different times relative to a common start.

• Absorption. A thick layer of passive material absorb most particles due to electromagnetic
(e+e-, γ) or hadronic interactions (all charged and neutral hadrons). After a certain amount
of material only muons and neutrinos survive. The muons can then be detected easily with
any kind of charged particle detector, depending on the desired speed and resolution.
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Physics Signal Background Final σ · BR s/bg PID
Case Channel Channel State (estimate) ratio challenge

Charmonium Y (4260) → J/ψ2π± 2e±2π± 60 pb e/π
Spectroscopy 2π+2π− 4π± 46 µb 1 · 10−6 sep.

Y (4260) → J/ψ2π0 e+e−4γ 30 pb e/π
π+π−2π0 2π±4γ 50 µb 6 · 10−7 sep.

X(3872) → J/ψη e+e−2γ 20 pb e/π
π+π−π0 2π±2γ 290 µb 7 · 10−8 sep.

χc → J/ψγ e+e−γ 0.8 nb e/π
π+π−π0 2π±2γ 0.29 mb 2 · 10−6 sep.

hc → ηcγ → 2Φγ 4K±γ 20 pb p/K/π
∆++∆−−π0 pp2π±2γ 530 µb 4 · 10−8 sep.

4π±π0 4π±2γ 750 µb 3 · 10−8

ψ(3770) 2K± 4π± 14 pb K/π
pp → X X 60 mb 2 · 10−10 sep.

ψ(4040) → D∗D̄∗ 2K± 4π± 0.46 pb K/π
pp → X X 60 mb 1 · 10−11 sep.

Exotics ηc1η → DD∗η 2K±2π±8γ 0.06 pb K/π
pp → X X 50 mb 1 · 10−12 sep.

ξ(2230) → 2Φ 4K± 3 nb K/π
pp → X X 60 mb 5 · 10−8 sep.

Baryon Ξ+Ξ− pp4π± 1 µb
Production pp → X X 60 mb 2 · 10−5

Electromagn. pp → e+e−a e+e− e/π
Formfactors pp → π+π− π+π− 2 · 10−6 sep.
Drell-Yan pp → µ+µ−X µ+µ−X µ/π
Process pp → X X 60 mb ? sep.

Hadrons in p 40Ca→ J/ψX e+e−X 0.3 nb e/π
Nuclear Medium p 40Ca→ X X 1 b 3 · 10−10 sep.

a s=8.2 GeV2 in the angular range of | cos(ΘCMS) |< 0.8

Table 1: Comparison between the cross sections of some important channels which are planned to
be investigated with PANDA and the cross sections of the corresponding major background where
a good separation of the various particle species is mandatory. Since most of the channels could
not be measured so far, the cross sections are mainly based on rough assumptions. The numbers
have been extracted from the PANDA Physics Book [3].

The subsystems building the particle identification system of P̄ANDA are listed with growing
distance to the Target point:

• Micro Vertex Detector (MVD)

• Time Projection Chamber (TPC)

• Staw Tube Tracker (STT)

• Barrel Time of Flight Detector (ToF)

• Barrel DIRC
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• Electromagnetic Calorimeter (EMC)

• Endcap Cherenkov Detector

• Muon Counter

• Forward Cherenkov Detector

• Forward Time of Flight Detector

• Forward Calorimeter

3.1 Micro Vertex Detector (MVD)

The Micro Vertex Detector will provide precise space point measurements for particle tracking
and the reconstruction of decay vertices. The detector will be build of state-of-the-art silicon
semiconductor detector layers of pixel and strip type. A schematic overview is given in figure 1.

Figure 1: Artist view of the MVD design together with beam and target pipe cross. A half shell
of the barrel section has been removed for insight. The inner detector elements (green) are pixel
sensors, the outer (blue) are strip sensors.

Although the number of reconstructed MVD hit points per track is limited to 4 in the barrel section
and 5-6 in the forward domain the energy loss information provided by the readout electronics can
be used as part of the particle identification decision. The ability of separating different particle
species relies on an accurate energy loss information and a good knowledge of the track position
with respect to the sensors. Figure 2 shows the computed dE/dx information for tracks of different
particle types in a momentum range from 50 MeV/c to 1.2 GeV/c.

In general, the MVD might be able to contribute to the global PID for particle momenta below
1GeV/c, in particular the separation of protons from other species. Kaons might be distinguishable
up to ≈600 Mev/c from pions, muons and electrons, which can not be further separated. In Figure



3 PID SUBSYSTEMS 9

dE/dx [MeV/cm] 
5 10 15 20 25 300

20

40

60

80

100

120

140

160

180

Signal-to-noiselangaufun
a) b)

Figure 2: Energy loss information for different particle species and its dependence on momentum
(a). The upper band corresponds to protons, whereas the middle band shows kaons and the lowest
band is a superposition of pions, muons and electrons. Part (b) shows an individual fit of the
dE/dx signal from protons with a momentum of 400 MeV/c.

2,b) a typical dE/dx signal for protons with momentum of 400 MeV/c is shown. The signal can
only be described sufficiently by a convolution of a gaussian and a Landau component by using:

w(s) =

∫
L(x)G(s− x)dx (1)

The used parameterizations are

Gσ(x) =
1√
2πσ

e−x2/σ2

(2)

for the Gauss distribution and

Lτ (x) =
1

πτ

∫ ∞

0

e−t(ln t−x/τ) sin(πt)dt (3)

for the scaled Landau distribution. The sensors, where the deposited charge is collected, are
very thin silicon devices of typical thicknesses of 200− 300 µm. Therefore the energy signal will
be dominated by Landau fluctuations, which can not be fully suppressed by a truncated mean
method. The remaining tail for the proton signal is still visible in figure 2,b). The dE/dx signal
can be than described by only three parameters,the Gauss width σG , στ respectively for the
Landau width and s, which is the most probable value of the Landau distribution.

The dE/dx bands for individual particle types are following the well known Bethe-Bloch relation
given in equation 19 in section 4.3.3. The method described here makes use of a full detector
simulation using a combined tracking of the MVD and the outer tracking detectors. To very low
momenta the momentum uncertainty increases, which causes a widening of the individual bands.
In order to estimate the separation ability the momentum axis has been divided in 25 MeV/c
wide bins and for each bin the shape of the the dE/dx distribution has been determined. The
momentum dependence of the three parameters σG, στ and s was input for the probability for
each particle type. Based on the obtained parameterizations for each particle type and each track
the probability was calculated and input for the global PID decision.

The likelihood for proton trajectories is shown in Figure 3. The upper picture shows the calcu-
lated proton probability and its dependence with momentum. The figure shows in addition the
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Figure 3: Computed normalized likelihood for proton tracks in a momentum range p = 0.1 . . . 2.0
GeV/c. The upper picture show the proton probability, whereas the lower left shows the kaon
misidentification probability and the lower right the pion miss identification, respectively.)

probability to misidentify the track as kaon (lower left), or pion (lower right) respectively. Muons
and electrons can not be further separated from each other and their probability is equal to the
pion case. The calculation takes the full convolution integral into account which causes a smearing
to lower likelihood values apart from the maximum value.

As explained above the calculation was done for fully reconstructed single particle events under
the assumption of equal abundance1. Several additional error sources have not been considered
and will be subject to further investigation. The properties of the front end electronics are not
yet fully fixed and an additional uncertainty ∆dE was omitted. This is usually in the order of a
few percent but depending on the gain of the energy measurement of the front end. The sensors
were assumed to be perfectly aligned. The position calibration in the final experiment has to be
in the order of the hit reconstruction accuracy in order to avoid a larger additional smearing.

1This is not true for most physics channels and in particular for annihilation background, e.g. strange production
is suppressed, but a common way to compare directly the efficiency for particular particle types.
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The MVD can contribute to the global PID in the momentum region below 1 GeV/c to separate
protons and kaons from the other particle species. It is therefore together with the outer tracking
detector complementary to the DIRC measurement and can improve the global PID information.

3.2 Central Tracker

Since the central tracker depending on the detector type provides as a surplus a dE/dx-information
it can give important help for the particle identification in the low momentum regime (< 1 GeV/c).
For PANDA there are two options for the central tracker which are a Straw Tube Tracker on the
one hand and a Time Projection Chamber on the other hand.

3.2.1 Time Projection Chamber (TPC)

The working principle of a GEM-based TPC and the geometrical design of the PANDA TPC
[1] are sketched in Figs. 4a and 4b. Charged particles traversing the detector volume ionize the
counting gas and an electric field separates positive ions from electrons. The cylinder axis of the
TPC coincides with the direction of the electrical field lines and also the direction of the solenoid
magnetic field of the target spectrometer. The primary electrons drift towards an amplification
stage, which consists of a triple-GEM stack. No gating grid is foreseen for the PANDA TPC to
allow a continuous operation at the HESR antiproton storage ring. In order to keep the build-
up of space charge inside the drift volume at a minimum, the back flow of slow ions from the
amplification stage has to be suppressed as much as possible. GEM foils [4] offer an intrinsic ion
suppression if the settings of the whole stack are optimized accordingly. A continuous readout
including online tracklet reconstruction is envisaged for the TPC.

(a) Working principle of a GEM-TPC. (b) Geometry of the PANDA TPC.

Figure 4: Time Projection Chamber; for further details see text and [1].

In order to accommodate the target pipe, the TPC is split into two half-cylinders of a length of
150 cm. The inner and outer radius is 15 cm and 42 cm, respectively. 65 000 to 100 000 pads of an
area of 4-6mm2 are planned. A Ne/CO2 gas mixture (90/10), possibly with a small admixture
of CH4, and a gain of a few thousand are furthermore foreseen. The drift field is 400V/cm.
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Under these conditions ≈ 50-100 energy loss measurements per track are feasible. This allows,
in combination with a truncated mean algorithm, the identification of charged particles via their
mean energy loss per track length dE/dx (Bethe-Bloch-formula, see equation 19). The TPC
therefore contributes significantly to the overall PID performance of PANDA, in particular in the
momentum regime below 1GeV/c. In Fig. 5 the energy loss distributions for different particle
types are shown up to 1.5GeV/c. The plot has been obtained from the “Fast Simulation” described
in section 4.3 assuming a dE/dx resolution of 8% for the TPC (cf. table 10).

Figure 5: Energy loss in the TPC vs. particle momentum up to 1.5GeV/c.

3.2.2 Straw Tube Tracker (STT)

The single straw tube is a gas filled tube with a wire along its axis. The wire is the anode the
inner conductive wall is the cathode and a high voltage of some kV is applied between the two.
An electric field is then present in the gas filled area: when a charged particle transverses it,
ionization takes place; the electrons drift toward the wire, while the ions drift toward the wall.
Once the electrons are near enough to the wire (' 50µm), an avalanche multiplication takes
place with an amplification of 104 − 105 of the primary charge signal which allows the readout
of the electric signal. Concerning the gas choice, it is necessary to find a compromise between
the material budget, which must be small to minimize the multiple scattering, and a good spatial
resolution. An Ar/CO2 gas mixture (90/10) has been chosen, since the simulations with Garfield
[5] have demonstrated that even though He would give a lower material budget, it would worsen
the resolution. The arrival time of the signal defines the drift radius and the charge collected is
proportional to the particle energy lost by ionization.

The Straw Tube Tracker consists of an ensemble of 150 cm long drift tubes, arranged in an
hexagonal shape around the beam axis.

The present solution consists of 4204 tubes, arranged in double layers, 2800 of which parallel to
the beam axis, the others inclined with respect to the beam axis (skewed tubes); the skewed tubes
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STT characteristics
internal radius 15 cm
external radius 42 cm
skew angle 3o

tube wall thickness 30 µm
tube diameter 1.006 cm
tube standard length 150 cm
wire diameter 20 µm
wall material mylar
wire material gold plated W
gas mixture 2 atm argon Ar/CO2 (90/10)
transparency X/X0 < 1%
r-φ plane resolution < 100 µm

Table 2: Dimensions and material budget of the Straw Tube detector. X/X0 is the thickness
expressed as the radiation length fraction. The quantities listed in this table are under study and
the final layout of the STT could be different.

are necessary to allow the z coordinate determination. The present layout of the Straw Tube
tracker is shown in fig.6. The tubes in two consecutive layers are staggered in order to resolve the
left-right ambiguity.

Figure 6: Present layout of Straw Tube Tracker

The geometric characteristics used for the simulations are summarized in tab.2. Among the STT
advantages we recall:

• the small signal’s cross-talk;
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• the insensitivity of neighboring straws in case of broken wires;

• the high mechanical stability if the straws are arranged in close-packed multi-layers;

• the high tracking efficiency;

• the good spatial resolutions

• the high rate capability.
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Figure 7: Reconstructed energy loss by a 40% truncated mean algorithm for various particles
vs the reconstructed momentum (left) and corresponding separation power (right) in the STT
detector.

For a 1 GeV track, the STT detector allows about 25 energy loss measurements. We considered a
sample of simulated tracks fully reconstructed with the helix fit. In each tube, the deposited energy
has been reproduced with the detailed simulation of the cluster formation, charge multiplication
and collection, whereas the radial path has been reconstructed by the measured drift radius and
by the dip angle resulting from the helix fit. The 40% truncated mean of these sampled dE/dx
values is reported in fig. 7 (left), whereas the corresponding separation power is shown in fig. 7
(right). These results clearly demonstrates the capability of the STT detector in the low energy
PID.

3.3 Barrel ToF

The Barrel Time-of-Flight detector (TOF) has to be placed inside the solenoidal magnet to provide
the identification of soft particles at large polar angles from 22 to 140 degrees. The required
resolution of the Barrel TOF detector has to be better than 100 ps. It is assumed the Barrel
TOF will consist of separate modules arranged around the tracking detector, TPC or STT. The
proposed length of the TOF is about 190 cm, the inner radius is 48 cm. Two variants of the Barrel
TOF detector are presented: Resistive Plate Chambers TOF and Scintillator TOF.
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3.3.1 Barrel RPC TOF

The recently developed timing Resistive Plate Chambers (RPC) in principle offers the required
resolution of better than 70 ps and almost 100% detection efficiency (see Fig. 8 and [6]). With
these parameters, identification of pions, kaons and protons becomes possible up to a few GeV/c.
A stable operation of such RPCs was observed in extensive tests during many years in various
experiments. The RPCs were found to be fully efficient and low-noise chambers. One of useful
feature of the RPC is its immunity to magnetic field. Choice of RPC type for the PANDA
barrel TOF should be made basing on specific requirements, including time resolution and its rate
dependence, as well as radiation hardness. Two RPC options are discussed below: HARP-type
RPC (developed by IHEP-JINR) and single-cell DRPC (developed by ITEP).

(a) (b)

Figure 8: (a) Time resolutions and (b) efficiencies of different RPC types.

HARP-type RPC TOF The design proposed here is based on experience obtained during the
work for the HARP experiment [7]. The RPC-TOF consists of 11 modules arranged around the
central tracker in the way shown schematically in Fig. 9. The length of each module is ∼ 190 cm,
the width of its active area is ∼ 30 cm.

Each module is a multi-gap glass RPC placed inside aluminum case. To have a full coverage in
the azimuthal angle, the active areas of neighbor modules will be overlapped as it is shown in left
Fig. 9. PCB with FEE electronics will go along both long sides.
Because of hard demands on the amount of material for the Barrel-TOF detector, a variant of
the four-gap glass RPC was chosen (see right Fig. 9). A beam test [8] of a four-gap RPCs has
demonstrated that a time resolution of ∼ 75 ps can be reached even with the old HARP FEE. The
RPCs can be made from a ”standard” float glass with thickness of 0.6mm. The gaps between glass
plates are kept with spacers made of fishing line. The thickness of the TOF module (including
aluminum box) is X/X0 ≈ 6.0%.
Each RPC will equipped with 64 strips with a double ended readout. Each strip has a length
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Figure 9: Possible arrangement of 11 barrel RPCs (left figure) and Four-gap RPC. Cross-section
through its short side (right figure).

of ∼ 30 cm at 30 mm width. Already existing data [9] on multi-gap RPC with strips (strip
length: 95 cm and width: 25mm) inspire a hope that time resolution of 60-70 ps can be reached
with double-end readout. The signals will be amplified and digitized at the RPCs to use the
Time-Over-Threshold (TOT) method for slewing correction as it was proposed in [10]. The total
number of HPTDC channels needed to read all strips is about ∼ 1410. The development of the
read-out system has to be a major task during R&D study for the PANDA RPC.
A set of eleven TOF modules having total gas volume of ∼ 60 liters is operating with a non-
flammable gas mixture containing 90%R134A, 5% isobutane and 5%SF6. The flows of three
gas components are metered with ”electronic mass flow meters”. At total flow rate of about
200 cm3/min, a gas exchange of one volume will be every ∼ 5 hours. The TOF modules are
supplied with gas in groups, say, of four. Each group has its own control and protection systems.
Very important question is the rate capability. Since the bulk resistivity of glass is ∼ 1013Ω ·cm,
the rate capability of a glass RPC could bring a potential problem due to the time needed to
neutralize the charge deposited on the resistive plates after discharge inside the gas gaps. During
measurements performed in the GIF test area for the ALICE TOF detector, it was observed
that there was no deterioration of the efficiency and the resolution for the ALICE MRPCs up to
1 kHz/cm2. This result found for 10-gap glass RPC should be well for a four-gap chamber too.
The estimations using the DPM generator for minimal bias events showed that particle flux in the
PANDA barrel for momenta of the incident anti-proton between 1.5 GeV/c and 15 GeV/c is less
than 1 kHz/cm2.

Particle Identification: The Barrel RPC-TOF provides a particle identification using a mea-
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Figure 10: Inverse velocity of particles vs. momentum (left figure) and momentum of particles vs.
squared mass reconstructed with RPC-TOF (right figure).

surement of a particle arrival time and a momentum and length of a track information from the
tracking detectors (TPC or STT). In the PandaRoot framework, we generated events of K, Pi,
proton production isotropically through the RPC-TOF with momenta from 0.1 to 2.1 GeV/c.
We simulated and reconstructed the events using RPC-TOF, and calculated velocity and squared
mass of the particles by the formulas: 1/v = t/l and M2 = P 2(1/v2− 1). Fig. 10 gives the results
of a particle identification using the 1/v and the M2 information from the RPC-TOF.
Separation power: Fig. 11 shows calculation of a separation power. The difference between
time of flight of two different particles divided by the TOF resolution, (t1 − t2)/σt (”separation
power”), is presented in Fig. 11 for different pairs of particles for the most hard case - for polar
angle Θ = 900, and for polar angle Θ = 300. The computation was done for two values of σt:
70 ps and 100 ps.

The calculations of the separation power for angle Θ = 300 demonstrate that the barrel TOF
with resolution of ∼ 70 ps will be able to identify hadrons with momentum up to few GeV/c. The
RPC-TOF providing the particle identification at low momentum can be a good supplement to
the DIRC.

Furthermore, the RPC-TOF can help as a reference detector for the one-dimensional DIRC.

In ideal case, the time-of-flight is measured with information from two detectors: start time, t0,
from a reference detector placed somewhere near the target and a stop time of flight t from the
barrel TOF. However, even in case of no start detector, t0 can be found by fitting measured values
of t in multi particle events with different hypothesis.

Single-cell DRPC TOF The suggested design of the DRPC-based TOF system (hereinafter,
DRPC-TOF) consists of 124 identical modules (two modules are joined in the center of the system)
arranged around the central tracker in the way shown in Fig. 12. The average barrel radius is
50 cm and its total system thickness is about 7 cm.

Such setup guarantees 100% geometrical efficiency even in case of a zero magnetic field and straight
tracks. The length of each module is 90 cm, the width of its active area is 5 cm. Each module
contains 18 DRPC cells with 4 or 6 gas gaps sized 5 × 5 cm2 attached on both sides to a multi
layer PCB. The PCB is also used to route signals from the FEE to the readout electronics (TDC
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Figure 11: Separation as a function of momentum for polar angles Θ = 900 and Θ = 300.

(a) (b)

Figure 12: (a)View of DRPC TOF and (b)positioning of DRPC modules inside the barrel.

and QDC, or only TDC), as well as to provide low voltage for the FEE and high voltage for the
chambers.

The part of the PCB containing the DRPC cells is placed inside an aluminum case. The rest
part of the PCB is left outside the case and is intended to provide space for low voltage and high
voltage connectors, filters, signal repeater for sending signals to the TDC (or the TDC itself) and
a scheme for fast OR Region of Interest (RoI) trigger. The total sensitive region of the Barrel
DRPC-TOF is about 5.6 m2, the total number of channels is 2232.
FEE and readout electronics: Basing on the experience of the ALICE TOF project we suggest
to use 8-channel NINO ASIC chips for FEE. These chips can be placed on the same PCB with
the chambers between neighboring cells. For the readout an ALICE TOF end cap crate with
commercial TDC (TRM module) and crate controller (DRM module) can be used [11]. In this
variant, the Time-Over-Threshold (TOT) method of time-amplitude slewing correction may be
implemented. Since the magnetic field in the PANDA environment is expected to be 4 times
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higher than that in ALICE, two such crates can be placed in the counting room.
DRPC cell design, rate capability and granularity: The DRPC is one of the RPC types
developed during the R&D for the ALICE TOF. It was specifically designed to operate in a high-
rate and high-occupancy environment. The DRPC may be described as a ceramic parallel-plate
chamber with conductive electrodes, the anode of which possesses surface resistivity. This is done
through depositing thin SiC layer on the anode by evaporation. Thereby, a quench circuit appears,
formed by the SiC resistivity R and the chamber capacitance C [12].

(a) (b)

(c) (d)

Figure 13: (a,b) Number of total TOF hits per track and (c,d) total number of TOF hits per
event for antiproton-proton and antiproton-Au collisions.

Almost no change in the efficiency and time resolution of DRPC was observed under the rates of
up to 5 kHz/cm2 (Fig. 8b) whereas using conventional glass with the bulk resistivity of 1013 Ω cm
limits the rate capability of RPC up to 1 kHz/cm2. Since the rate in PANDA at z ≈ 0 is expected
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to be more than 700 Hz/cm2 in proton-antiproton collisions and even more in antiproton-Au
collisions, the DRPC becomes a competitive alternative to the glass RPC.

To calculate the optimal TOF granularity, occupancy simulations were performed for the antiproton-
p and antiproton-Au collisions by means of the UrQMD1.3 generator. The magnetic field was
assumed to be equal to 2 T, the antiproton beam momentum was set at 15 GeV/c, no interaction
with matter was taken into account.

The simulation proves that 80% of charged particles with the momentum of more than 0.15 GeV/c
reach the TOF barrel. The main discovered PID problem is that particles with low pT can hit
TOF many times because of being caught by the magnetic field. Plots (a) and (b) in Fig. 13
show the number of hits per track in this case. The total occupancies in antipoton-proton and
antiproton-Au collisions are presented in the plots (c) and (d) of Fig. 13. Despite small average
numbers, the distributions have long tails and, for instance, in case of antiproton-Au collisions the
occupancy can even reach 0.1 hits/dm2. Therefore, to keep the total occupancy within 5%, the
granularity has to be limited with 0.45 dm2. We have decided to set the active size of the cell at
5× 5 cm2. More realistic simulation in the framework of the PandaRoot package will be done in
the near future.
Material budget: The radiation length of a module containing a 4-gap DRPC is estimated at
10-13% X0. The main part of it (8.5% X0) comes from the ceramics. The exact value of radiation
length will be defined after rigidity test of prototype with real PCB.

3.3.2 TOF scintillator barrel

The TOF scintillator barrel at Panda consist of 16 bars, each of these bars contains 6 scintillators
slabs.

The scintillator material is BICRON 408. Due to the fact that the decay constant of this kind of
scintillator doesn’t allow a high light yield, the slab should have a thickness of 4 cm to obtain a
time resolution of about 80 ps. Unfortunately such a thickness would create too many secondary
electrons which could affect the other detectors, such as DIRC, and the calorimeter. The thickness
of the TOF barrel assumed here has been 0.5 cm for simulations.

The TOF barrel has been implemented in the PandaRoot software, and a set of several particles,
such as protons, pions and kaons, has been simulated isotropically inside the PANDA spectrometer.
This simulation shows the ability to perform some particle identification, making use of the TOF
system and providing some knowledge on the mass of the simulated particle. At the end the
results can be compared to the ones obtained from the RPC TOF.

Fig. 14 shows the behavior of the particle velocity(beta) with the momentum. The beta parameter
is obtained by dividing the track length of the simulated particle by the time of flight measured by
the TOF detector. In the figure the dark points represent pions, the blue kaons and the red ones
protons. One can even observe that a good separation occurs for momenta lower than 1 GeV/c.
In the figure below, the mass of the particles has been reconstructed by taking the track length,
the momentum and the tof of the particle.

For this result, the tof hits were used in combination with the tpc hits, in order to perform a good
track for the particle.



3 PID SUBSYSTEMS 21

MC momentum (GeV/c)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

b
et

a 

0

0.2

0.4

0.6

0.8

1

particle tof identification

 Mass (GeV/c†)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

1000

2000

3000

4000

5000

Mass reconstruction

Figure 14: Particle identification using tof scintillator barrel. The upper plot shows the behavior
of the beta and the momenta of the particle. The figure below represents the mass reconstruction
for pion, proton and kaons

3.4 Barrel DIRC

The purpose of the Barrel DIRC (Detection of Internal Reflected Cherenkov photons) is to provide
a particle identification. The mass of the particle can be obtained by combining the velocity
information of the DIRC with momentum information from the tracking detectors. In addition
the distinction between gammas and relativistic charged particles entering the EMC behind the
DIRC is possible.

Basis for the calculations and simulations are the bar dimensions taken from the BaBar DIRC [13].
With the length adapted to the P̄ANDA setup there are quartz bars of 17× 35× 2300 mm3 and
a distance of 480 mm to the target point. Thus the barrel DIRC covers the solid angle between
22 and 140 degrees. The lower momentum threshold for kaons to produce Cherenkov light is for
an envisaged refractive index of n=1.47 as low as 460 MeV/c for single photon production. For
larger photon numbers the momentum threshold increases. With 17mm (of thickness) of fused
silica the DIRC bars present approximately 14% of a radiation length to normal incident particles.
The support structure will add 3%.

This design is initially based on the BaBar DIRC (Fig. 15) but at P̄ANDA further improvements
of the performance are under development. The combination of the spatial image of the photons
with their time of arrival gives access not only to their velocity but also to the wavelength of
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Figure 15: The P̄ANDA barrel DIRC as a version of the BaBar-DIRC scaled down in size. The
diameter of the barrel is 1 m.

the photons. Thus dispersion correction at the lower and upper detection threshold becomes
possible. Further on the reduction of the photon readout in size and number of photon detectors
is envisaged. A lens or a set of lenses at the exit of the quartz bar focus the photons to a focal plane
behind a readout volume of about 30 cm length. When this volume is filled with a medium with
the same refractive index as the radiator material (nmedium=nradiator=1.5) additional dispersion
effects and other image distortions are avoided.

A major issue is the maintenance of the barrel DIRC. While in the Babar DIRC a removal of
the radiator barrel and the photon detector was not foreseen, the PANDA barrel DIRC is to
be planned removable. The disassembly is not planned as default operation during maintenance
breaks. Rather the access to other detector parts and the replacement of broken DIRC items
need a removal procedure. For that purpose a photon detector smaller in size is favorable. The
segmentation of the radiator barrel and the optical joints between radiator and photon detector
need also careful design. As shown below the design of the photon detector and its link to the
radiator define the geometric dimensions of the latter.

Without having focussing elements each single PMT of the photon detector of the Babar-DIRC
can measure photons coming from all of the radiator slabs. The only optical limitation is some
space around the beam line which blocks photons from the other side. Introducing focussing
elements like lenses or mirrors define a focal surface. A possible orientation of this focal surface
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would be a flat plane perpendicular to the beam line. In this way each radiator slab focusses
its photons on the same plane and each photon detector element can measure the photons from
all radiator slabs. The design with different focal planes for different subsections (bar boxes) of
the radiator barrel would cause split ring images caused by photons from one subsection entering
the photon detector of another subsection. Blocking these photons reduces the photon detection
probability by factors of two to three.

The design of a flat focal plane with a lens doublet consisting out of the glass NLAK33 and fused
silica is shown in Fig. 16a. This lens combination was designed with the help of the ZEMAX
optical program [14] focusses on a flat focal plane at a distance of 30 cm even for large angles of
up to 40 degree. The results of the implementation in a ray tracer program (drcprop) within the
PANDAROOT framework is shown in Fig. 16b.

(a) Design of a lens doublet with the optical software
ZEMAX. The photon detector box is 300 mm in size.

(b) Test pattern of photon images on the focal plane of a
photon detector 300mm by 300mm in size. For a perfect
image rectangular structures are expected to be observed.

Figure 16: Development of a photon readout with flat focal plane using a system of lenses.

The coordinates show the position on the photon detector in millimeter for photons coming from
one of the slabs. In case of a perfect image one expects rectangular structures. The structures
are for different opening angles which are from 5- 30 degree in 5 degree steps measured where one
of the coordinates is zero. They allow to identify pin-cushion like or barrel like distortions. It is
seen that here the photons are focussed up to angles of 30 degree. Large angles hit the side of
the lens combination. There is still optimization for the design needed in order to keep the lens
combination more compact.

3.5 Electromagnetic Calorimetry in the Target Spectrometer

The major purpose of the electromagnetic calorimeter (EMC) is to measure photons very precisely
over a large energy range from approximately 10 MeV up to 15 GeV.

Lead-tungsten (PbWO4) is chosen as crystal material due to its good energy resolution, fast
response and high density. The crystals will be operated at -250C to guarantee a high light yield
and thus to achieve the required low energy threshold. Each of them will be 20 cm long, which is
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equivalent to a radiation length of approximately 22 X0, and are tapered with a front size of 2.1
x 2.1 cm2.

The EMC is very compactly designed and is subdivided in three different parts, namely:

• the barrel calorimeter which consists of 11360 crystals and covers the Θ range between 22◦

and 140◦,

• the forward endcap calorimeter with 3600 crystals which is located within the Θ range
between 5◦ and 22◦, and

• the backward endcap consisting of 592 crystals which is placed in the Θ region > 140◦.

The various requirements for the EMC in the target spectrometer, its final design and resulting
performance are extensively described in the EMC Technical Design Report [16].

3.5.1 PID Performance

Besides the detection of photons, the EMC is also the most powerful detector for the identification
of electrons. The recognition of this particle species will play an essential role for most of the
physics program of PANDA. An accurate and clean measurement of the J/Ψ decay in e+ e− is
needed for many channels in the charmonium sector as well as for the study of the p annihilation
in nuclear matter like the reaction pA → J/ψX. In addition the determination of electromagnetic
form factors of the proton via pp → e+e− requires a suppression of the main background channel
pp → π+ π− in the order of 108.

The performance of the electron identification with the EMC has already been investigated in
detail utilizing the offline software which has been devised for the PANDA Physics Book benchmark
studies. This will be briefly summarized in the following. More detailed documentations about
these investigations can be found in the EMC Technical Design Report [16] and in the PANDA
Physics Book [3].

In section 3.5.3 the possibility to identify K+ at momenta below 0.8 GeV/c via the EMC timing
information will be briefly discussed.

3.5.2 Electron Identification

The footprints of deposited energy in the calorimeter differ distinctively for electrons, muons
and hadrons. The most suitable property is the deposited energy in the calorimeter. While
muons and hadrons in general loose only a certain fraction of their kinetic energy by ionization
processes, electrons deposit their complete energy in an electromagnetic shower. The ratio of the
measured energy deposit in the calorimeter to the reconstructed track momentum (E/p) will be
approximately unity. Due to the fact that hadronic interactions can take place, hadrons can also
have a higher E/p ratio than expected from ionization. Figure 17 shows the reconstructed E/p
fraction for electrons and pions as a function of the momentum.

Furthermore, the shower shape of a cluster is helpful to distinguish between electrons, muons
and hadrons. The largest fraction of an electromagnetic shower originating from an electron is
contained in just a few crystals. On the other hand a hadronic shower with a similar energy
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Figure 17: E/p versus track momentum for electrons (green) and pions (black) in the momentum
range between 0.3 GeV/c and 5 GeV/c.

deposit is less concentrated. These differences are reflected in the shower shape of the cluster.
The most important properties are:

• E1/E9 which is the ratio of the energy deposited in the central crystal and in the 3×3 crystal
array containing the central module and the first innermost ring. Also the ratio between E9

and the energy deposit in the 5×5 crystal array E25 is useful for electron identification.

• The lateral moment of the cluster defined by

momLAT =
n∑

i=3

Eir
2
i /(

n∑
i=3

Eir
2
i + E1r

2
0 + E2r

2
0) (4)

with

– n: number of modules associated to the shower

– Ei: deposited energy in the iTH crystal with E1 ≥ E2 ≥ ... ≥ En

– ri: lateral distance between the central and the iTH crystal

– r0: the average distance between two crystals.

• A set of Zernike moments which describe the energy distribution within a cluster by radial
and angular dependent polynomials.

Since a lot of partially correlated EMC properties are suitable for electron identification, a Mul-
tilayer Perceptron (MLP) has been applied to obtain the optimal performance. The advantage of
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a neural network is that it can provide a correlation between a set of input variables and one or
several output variables without any knowledge of how the output formally depends on the input.
10 input variables in total have been used for the training of the MLP, namely E/p, p, the polar
angle θ of the cluster, and 7 shower shape parameters (E1/E9, E9/E25, the lateral moment of the
shower and 4 Zernike moments).

This trained network has been tested with a data set of single particles in the momentum range
between 300 MeV/c and 5 GeV/c. The obtained performance is illustrated in Figure 18, which
shows the electron efficiency and contamination rate as a function of momentum by requiring an
electron likelihood fraction of more than 95%. For momenta above 1 GeV/c one can see that the
electron efficiency is greater than 98% while the contamination by other particles is substantially
less than 1%.

Figure 18: The electron efficiency and contamination rate for muons, pions, kaons and protons in
different momentum ranges by using the EMC information.

3.5.3 Afterpulse K+ Identification

The EMC crystals of 20 cm length have enough stopping power for p=700MeV/c (or T=360MeV)
kaons. Stopped positive kaons remain in the crystal lattice until they decay, with 63% branching
ratio into muon plus neutrino. With 110MeV kinetic energy the muons have enough energy to
reach and deposit energy in one or two adjacent crystals. There is also the hadronic decay branch
with 21% into π+ and π0.

With a mean kaon lifetime of τ=12ns a delayed time tag from crystals adjacent to the kaon
stopping crystal is a clean kaon identification, if the EMC timing is at least a few ns.

This positive kaon tagging works well with the Crystal Ball (CB), currently installed and running
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at MAMI in Mainz[17], with NaI crystals of about the same stopping power as foreseen for the
PANDA EMC, wider crystals and a 2 ns time resolution. Typically, the afterpulse time window
opens at 8 ns after the prompt pulse. At MAMI, about 20% of the stopped positive kaons can be
tagged with such an afterpulse.

In PANDA, 10-30% of p=700MeV/c kaons decay before they can be stopped in the EMC, depend-
ing on the flight path length. The finer granularity for the PANDA EMC (as compared to Crystal
Ball) will allow a moderate increase in the fraction of afterpulse tagged K+. Crucially this method
depends on the availability of timing information in the ns range.

This method allows some kaon identification capability in the momentum range which lies below
the momentum range of the DIRC detectors with fused silica radiators foreseen for PANDA.

3.6 Endcap Cherenkov

Two DIRC design options exist for the endcap part of the target spectrometer section. These
differ in the photon readout design but both use an amorphous fused silica radiator disc. The
endcap detector position covers forward angles of up to ϑ = 22◦ excluding an inner rectangular
area of ϑx = 10◦ horizontal and ϑy = 5◦ vertical half-angles. Simulations using the DPM generator
[15] give an average charged particle multiplicity per p̄p interaction of 1.0±0.8 (at 2GeV/c) to
2.3±1.8 (at 15GeV/c) emitted from the target vertex into this acceptance.

In such a one-dimensional2 DIRC type, a photon is transported to the edge of a circular disc while
preserving the angle information. Avoiding too much light scattering loss at the surface reflections
requires locally (in the order of millimeters) a surface roughness not exceeding several nanometers
RMS.

The lower velocity threshold, which is common to both designs, depends on the onset of total
internal reflection for a part of the photons emitted in the Cherenkov cone.

There are several boundary conditions for the disc thickness. Radiation length considerations
as the detector is upstream of the endcap EMC call for a thin disc. The focussing design is
workable with 10mm thickness (X0=126mm). Regarding the mechanical stability and handling
during polishing, current company feedback recommends 20mm minimum thickness. The resulting
thickness of the radiator disc has to be a compromise.

3.6.1 Focussing Disc DIRC

In the Focussing Light guide Dispersion-Correcting design (Figures 19 and 20), when a photon
arrives at the edge of the circular or polygonal disc, it enters into one of about hundred optical
elements on the rim. Here the two-fold angular ambiguity (up-down) is lifted, the chromatic
dispersion corrected and the photon focused onto a readout plane. While the optical element
entered determines the φ coordinate, measuring the position in the dispersive direction on the
focal plane of the focussing light guide yields the θ coordinate.

Lithium fluoride (LiF) is UV transparent and has particularly low dispersion. Proton beam
irradiation of a test sample shows that radiation-produced color centers are confined to sufficiently

2Light is only reflected on surfaces of one spatial orientation, here the two disc surfaces both normal to the z
axis.
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Figure 19: Polygonal disc with focussing light guides attached to the rim used as optical readout
components.

Figure 20: Light guide side view shown with a set of rays used for optimising the light guide
curvature. Reflections at the parallel front and back surfaces keep the light inside but do not
affect the focussing properties.

small wavelength ranges, and are only partially absorbing at the expected P̄ANDA lifetime dose.
Hence we believe we can use LiF as a prism element (see Fig. 20) to correct the Cherenkov
radiation dispersion. The two boundary surfaces, with the radiator disc and the subsequent light
guide, make the chromatic dispersion correction angle-independent to first order.

As with the radiator, the light impinging on the inside of the light guide’s curved surface undergoes
total internal reflection, hence no mirror coating is needed. This reflection makes the focussing
also independent of the wavelength.

With the light staying within the dense optical material of the light guide, most of the incoming
light phase space from the disc is mapped onto the focal plane with its one-coordinate readout.
The focussing surface with cylindrical shape of varying curvature has been optimised to give an
overall minimum for the focus spot sizes of the different angles on the focal plane, individual
standard deviations being well below 1mm for the instrumented area.

For an Endcap DIRC detector with 128 lightguides and 4096 detector pixels that fits inside the
target spectrometer return yoke, Figure 22 shows the angle-dependent upper momentum limit
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Figure 21: Simulated photon hit pattern for four particles emitted at different angles θ and φ from
the target vertex.

Figure 22: Simulation-derived pion-kaon separation power for a focussing lightguide design with
a 15mm thick amorphous fused silica disc and 0.4 eV photon detection efficiency. On the left
the momentum dependence for two selected emission angles at the target vertex, on the right 4σ
values as a function of the angle, black data points are the reference design.

being about 4–6 GeV/c for 4σ pion-kaon separation within the acceptance ϑ=5◦–22◦.

Typically all of the 40 detected photons per particle arrive within a 4 ns time window.

Each lightguide can individually be assigned its own 0.4 ns acceptance window. For the pixel
size used in this simulation they are contained inside a 40 pixel·ns volume, which at 4000 detector
pixels amounts to 10 ps detector occupancy time per particle signature.

The detected photon rate (source: presentation KF 2007-03-27 Genova, 2E7 interactions; scaled
to 4000 pixels) is 3E7 s−1 per PMT and 1E6 s−1 per detector pixel.
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Figure 23: Left: Measured photon distribution from a γ Barrel EMC shower leaking out of the
EMC edge towards the Endcap. Photons from one kaon of 4.16GeV/c are added, and the kaon
velocity is derived from candidate kaon photons. Right: Analysed mass distributions for kaon
with and without shower. The road for kaon photon acceptance is derived from simulations, and
within some simulation simplifications the bounds are set such to include (almost) 100 percent of
the photons. The systematic offset with the onset of background is thought to be caused by the
true kaon photon centre of gravity being off the middle of the road interval, probably explained
by the coma aberration of the curved lightguide focussing (an improved interval algorithm should
help). At this level of background there is a small increase in the width of the reconstructed kaon
mass distribution.

3.6.2 Time of Propagation Disc DIRC

In the Multi-Chromatic Time-of-Propagation design ([18]) small detectors measure the arrival
time of photons on the disc rim, requiring σt=30–50 ps single photon time resolution.

For any given wavelength, the disc edge is effectively covered alternately with mirrors and detec-
tors. Only due to the resulting different light path-lengths one can determine accurately enough
the start reference time, i.e. the time when the initial charged particle enters the radiator, as the
stored anti proton beam in the HESR has no suitable time structure to be used as an external
time start.

As some of the light is reflected several times before hitting a detector, the longer path lengths
allow a better relative time resolution.

The use of dichroic mirrors as color filters allows the detection of multiple wavelength bands within
the same radiator (the current design suggesting two bands) resulting in higher photon statistics.
The narrow wavelength bands minimize the dispersion effects, and the quantum efficiency curve
of the photo cathode material could be optimized for each wavelength band individually.

To verify the Principle of the ToP Disc the geometry of the disc was implemented into PandaRoot
and multiple sets of Monte-Carlo data were generated with subsequent reconstruction of the
generated particle types. The fig.25 shows the ToP Disc implementation into PandaRoot (left)
and generated photons from an incident pion and their path from the impact point on disc(right).
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Figure 24: Sketch of the flight-path in the ToP
Disc

Figure 25: Current scheme of TOP DIRC, 960
photon detectors mounted at rims of octagon
disc, located at Z=180cm in the PANDA coordi-
nate system(left side). On the right side the disc
was hit by 4 GeV/c pion at 15o, the yellow lines
shows the path of generated Cherenkov photons.
Some of them hit dichroic mirrors, are reflected
and travel longer.

Figure 26: Hit pattern of photons in two-
dimensional(φ,t) space. The Cherenkov photons
coming from primary particle are marked red and
from secondary particles , marked blue. Figure 27: Separation power between kaons and

pions from Slope fitting.

The reconstruction of particle types using different methods, like pattern fitting or slope fitting
in two-dimensions (detector number and time of propagation(fig.26) in first case, the calculated
arrival time of Cherenkov photons and MC time from GEANT in second case) yields acceptable
separation and low percentage of misidentification. See fig.27 for example in case of kaons and
pions.
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Already first simulations indicate the possible hurdles in particle identifications in the ToP Disc
DIRC. One of them is the smearing of the patterns from secondary particles, marked as blue
points in figure26. The possible effect from this is depicted in the next figures, where we present
the misidentification between kaons and pions without and with inclusion of secondaries (see
figure28a) and with inclusion of them (see figure28b).
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Figure 28: Misidentification between kaons and pions

To show that electrons can imitate Cherenkov radiation like pions we have performed MC simu-
lation of pions and electrons passing through 2cm thick quartz glass. The resulting spectra are
depicted in the figure29. As we can see ≈ 60% of electrons pass the glass without showering(red),
like most of the pions(magenta). In both cases we have secondaries , significantly more from
electrons(blue) than from pions(green). This is the more difficult situation than in case of pions,
but for the test, its better to have checks done in difficult case than in simplified ones. A first
prototype of the TOP-DIRC has been constructed and tested at the electron beam at DESY.
Nine BINP MCP-PMT’s were mounted on the rim of the half size half part prototype. We were
able to see coincidences between direct Cherenkov photons and detect reflected light from mirrors
partially covering the rim of the prototype. The collected data are now being analyzed and here
we show preliminary result of the coincidence between two detectors with direct photons (first
peak in Fig.30) and a coincidene between two photon detectors when one of them sees reflected
photons (second peak in Fig.30).

3.6.3 Proximity RICH

As alternative approaches Proximity Imaging Solutions were considered.

• Liquid radiator proximity RICH using CsI GEMs: Proximity focusing RICH detectors use
the most simple imaging geometry. Their resolution depends on the optical quality and cru-
cially on the ratio of radiator thickness to stand-off distance, the distance between the cre-
ation and detection of the photon. Using liquid or solid radiators yielding enough Cherenkov
photons, the radiator can be kept rather slim, which in turn only requires moderate stand-off
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Figure 29: Energy spectra of primary and secondary charged particles inside 2cm thick glass
after hitting it with electrons(pions) with 3.0 GeV energy. Unfortunately the energy of secondary
particles are high enough to create Cherenkov photons and as they doesn’t have the same direction
as the primary particle, the photons created by them smear the coordinate or the timing pattern
of the primary particle, hence, making reconstruction difficult.

Figure 30: Coincidence between two BINP MCP-PMT’s mounted on the rim of the half size half
part TOP-DIRC prototype, radiated with 4 GeV electrons at DESY test beam T22.
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distances on the order of 100 mm. The ALICE HMPID detector is build in this fashion using
a C6F14 liquid radiator and CsI-photon cathodes in an MWPC. This requires a UV optic. It
is proposed to use the same radiator technique and combine the third tracking station with
a CsI coated GEM photon detector. The detector will be thicker along the beam direction
than the DIRC detector previously described, but can be essentially moved to any position
along the beam axis. The estimated performance and the ALICE/STAR test results show
a significant decrease in performance compared to the DIRC solutions.

• Solid radiator proximity RICH using CsI GEMs: One of the main drawbacks of using the
ALICE design is the use of C6F14. This radiator is rather sensitive to impurities and ra-
diation damage requiring a purification system. Using a fused silica disc with a properly
machined surface as radiator circumvents the problem while keeping the geometrical advan-
tages of the design. Initial studies show a further reduction of performance mainly due to
strong dispersive effects in the UV region.

• Aerogel proximity RICH using PMTs: The Belle endcap Cherenkov threshold counter will
be replaced by a proximity imaging RICH counter using an Aerogel radiator and conven-
tional BiAlkali based multi-pixel PMTs as photon detectors. Using a so-called focusing
radiator scheme, prototypes show excellent performances. The main technological challenge
for this detector is to realise a photon detection matrix in a strong magnetic field. Re-
cent developments in the field of proximity focusing HAPDs seem to make such a detector
realistic.

3.7 Muon Counter

The main purpose of the PANDA muon system is to achieve the highest efficiency in identifi-
cation of muons in the medium-to-high energy range. Muons are present in the final state of
many annihilation channels. Among them the physics program is mostly concentrated on dimuon
production from Drell Yan at the maximum HESR momentum of 14.5 GeV/c or J/ψ formation
and decay in nuclear matter at 4.1 GeV/c momentum. In addition the study of rare decay of
charmed particles could require a single muon identification. The most severe PID requirements
to the muon system are set by the DY dimuon production, that has been selected as benchmark
channel. Looser identification requirements are set by the J/ψ production channels, because of
the strong kinematics constraint on the dimuon mass.
In general the interesting processes having muons in the final state have small cross sections com-
pared with the background, e.g. the DY channel features a very low cross section (≈ 1nb) and an
unfavorable signal-to-noise ratio of ≈ 10−6. As a consequence the muon system must provide the
maximum acceptance and efficiency. In the dimuon channels the simultaneous identification of a
slow and of a fast muon is needed, with a strong correlation angle-momentum.
Muon counters are foreseen both in the Target barrel part and endcap. In the Forward spectrom-
eter the muon counters and filters will act as hadronic calorimeter. The azimuthal angle covered
by the muon system ranges from 0o to 120o with a 2π polar angle coverage. With respect to the
Letter of Intent the muon system has retained the original idea to use the solenoid yoke as muon
filter. However the concept design has changed following the results of a preliminary acceptance
study and the iron segmentation has been considered for the system optimization.
The momentum range of the DY muons reaching the barrel extends up to few GeV/c. The lower
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Figure 31: Range measured as number of
crossed planes for a muon with 0.8 GeV en-
ergy.

Figure 32: Range measured as number of
crossed planes for a pion with 0.8 GeV en-
ergy.

end of the range is fixed by the energy losses and the magnetic bending in the inner detectors
(500 MeV/c).

The DY muons crossing the forward endcap show an energy range going from 1 to 3 GeV, with
an average energy loss of 250 MeV before to enter the muon counters. The energy of the muons
travelling through the Forward spectrometer can be greater than 10 GeV.

As a consequence slow muons, mainly produced in transverse direction cannot reach the muon
system and must be identified by the inner detector. Medium and high energy muons are identified
by the muon system only if they are positively detected by the muon detectors and properly match
a charged primary track detected by the central tracker. The muon detector output that can be
considered for identification purposes is the hit multiplicity in a selected region and, for isolated
tracks, a direction and, where possible, a momentum measurement. Range measurement was also
suggested as an effective tool for µ/π separation and the arrangement presently under simulation
is conceived for this purpose, see fig. 31 and fig. 32.
The following plots show the behavior of some parameters useful for the muon identification.
The background coming from primary hadrons (mostly pions) could be rejected by the evaluation

of the number of planes in the muon system crossed by the charged particle (see fig. for muon
and pion of equal energy).
The contamination coming from secondary muons produced by the pion decay could be reduced
by considering the angular correlation between the track extrapolated from the vertex and the
track segment measured by the muon detectors. In this case (see fig. 33) the measurement of the
track momentum by the muon detectors could help.

here( relevant plots

3.7.1 Muon system overview

The parameters considered in the choice of the muon detectors are the spatial and time resolution,
to allow independent reconstruction of the track segment direction, the simplicity and flexibility
of the design, since the area to be covered is large and divided in different shapes, the robustness
the reliability, also in terms of ageing and finally the cost. the Muon Drift Tubes (MDT) have
been proven to be a mature and widely used technique that join a very high detection efficiency
(≈ 95%) to a great simplicity of construction and operation. Following the proposal of the JINR-
Dubna group an eight-cell module of MDT is constituted by a metallic cathode extruded with
a comb-like profile and covered by a stainless steel cover. The signal wires pitch is 10 mm, the
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Figure 33: Muon from decaying pion with 0.8 GeV energy: energy vs decay angle in the Lab
system.

thickness of the profile is ≥ 0.45 mm and gives the main contribution to the inefficiency of the
counter.
here the MDT cross section and the table of the performances

Figure 34: Cross section of the Muon range system in the Target Spectrometer.

The MDT are one-coordinate detectors and at least two layers must be installed to get a track
space point. An R&D project is going on at JINR Laboratories aiming to use MDT as two-
coordinate detector. For this purpose the stainless steel cover should be removed and substituted
by a plastic support for strips or pads. In this case the second coordinate is obtained by reading
out the induced signal.
The MDT are operated in proportional mode. Both the Yes/No readout or the wires and drift
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time measurement are considered for the PANDA operation. The best spatial resolution is ob-
tained in drift mode operation, corresponding to 0.5-0.8 mm r.m.s.
The detector coverage presently considered corresponds to a full coverage of the Target Spectrom-
eter in the transverse direction with respect to the beam axis (Barrel) and in the forward direction
(Forward Endcap), using the yoke of the solenoid as a muon filter. One of the eight parts of the
barrel will be only partially covered by muon counters to allow the insertion and the operation of
the target and its services. In the Forward Spectrometer (angular coverage from 5◦ − 10◦ to 0◦

the hadron calorimeter could be combined with muon counters forming a range system, too 3.10.2.

3.8 Forward RICH

The forward boost of the reaction products, being a characteristic feature of fixed–target experi-
ments, calls for good particle detection and identification at small scattering angles.

The Forward RICH is the solution proposed to perform PID for the ejectiles emitted at laboratory
angles ϑX < 10◦ and ϑY < 5◦. Physics, geometrical limitations and location of this detector impose
the following requirements on the design of this detector:

• wide momentum range for hadron identification (up to ∼10 GeV/c),

• minimum material budget (in order not to deteriorate momentum and energy resolution of
the downstream detectors),

• radiation hardness.

The first feature requires a careful choice of radiators. The current design proposes to build the
Forward RICH as a dual radiator Cherenkov detector, with aerogel (PID for lower momenta)
and perfluorhexane (PID for higher momenta). This option is used in other experiments, e.g.
HERMES [19] and LHCb [25]. HERMES RICH design ranges of particle separation based on the
signal from each of the radiators are shown in fig. 35. The limits were calculated assuming realistic
photon resolution of σ(ϑ) = 7 mrad, and the number of photons produced in the gas and the
aerogel as 12 and 10, respectively. In the calculation of upper momentum limit of the separation,
the demanded number of standard deviations between the two distributions nσ = 4.652.

The main disadvantage of this choice of radiators is a relatively high kaon threshold at 2.0 GeV/c.
However, at lower momenta identification of ejectiles can be performed with the use of a TOF
wall, as discussed in sec. 3.9.

The need to reduce the material budget to the necessary minimum favors mirror imaging. Using
carbon–fibre based mirrors allows to move the photon detector outside of the acceptance of the
Forward Spectrometer and thus reduce the overall detector thickness to ca. 8 − 11% X0. The
Forward RICH of PANDA will be much larger than the HERMES RICH and the space available
for it is very limited. This requires a careful study of the optics. One of the currently considered
options includes four spherical mirrors and four detection planes, the other exploits the LHCb
design (see fig. 36).

The last requirement, radiation hardness, can be fulfilled choosing HPDs or MA-PMTs for photon
detection. With the appropriate shielding, they have capability to operate in the fringe field of
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Figure 35: Momentum ranges for hadron separation in aerogel and perfluorhexane (C4F10). Be-
tween the dashed lines, the hadrons can be separated (figure from [19]). Light parts of the bars
indicate the momentum regions, where the detector acts as a threshold Cherenkov.

Figure 36: Two options of mirror imaging for the Forward RICH: A) direct, with 4 mirrors looking
at different points B) exploiting additional plane mirrors which allow the use of spherical mirrors
with a longer focal length.

the dipole magnet. The granularity of the photon detectors can only be adjusted when the design
of the RICH geometry is finalised.

3.9 Forward ToF

Typical momentum spectra of the charged hadrons produced within the acceptance of the forward
spectrometer FS ( ±10 deg. in horizontal plane and ±5 deg. in vertical plane) for primary beam
momentum of 15 GeV/c are shown in Fig.37. The spectra are calculated in the Pandaroot frame-
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work using the Dual Parton Model (DPM) Monte Carlo generator. The hadrons with momentum
below 4-5 GeV/c are assumed to be identified with the help of time of flight (TOF) technique.
Identification of hadrons with higher momenta requires a forward RICH. This is in particular
important for identification of anti-hyperons. For example, practically all anti-lambda hyperons
produced in the p̄p → Λ̄X reactions (including two-body reaction X = Λ) are boosted forward
such that the anti-protons from the Λ̄ decay are detected mostly by the FS. In general, a combi-
nation of the TOF and RICH looks as the best one for the PID in the whole momentum range
of the produced forward hadrons. The combination of TOF and RICH detectors is successfully
used in the HERMES experiment [19]. The HERMES RICH thresholds are 2 GeV/c for pions
and 4 GeV/c for protons, respectively. Here we focus on PID performed using TOF technique in
the forward part of the PANDA detector.
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Figure 37: Momentum spectra of charged hadrons emitted within the FS angular acceptance in p̄p
collisions at 15 GeV/c.

TOF detector performance. High-resolution TOF detectors are widely used in many exper-
imental setups [20]. The PANDA forward detector consists of two parts: the forward TOF wall
and two side TOF walls placed inside the FS dipole gap [1]. The side detectors are designed for
the registration of low momentum particles, not being detected by the forward wall as they are
bent inside the FS dipole by the magnetic field to the left or to the right towards the magnet
yoke. Unfortunately, the exact configuration of the FS dipole magnetic field is not yet available
which makes it difficult to simulate tracking through the dipole. According to our estimations,
at the primary beam momentum of 15 GeV/c a particle with momentum below 0.8-1.2 GeV/c
(depending on scattering angle) is bent to one of the side detectors. Each side detector consists
of 5 vertical scintillation strips with dimensions 100 ∗ 10 ∗ 1.5 cm3. It is not decided yet whether a
magnetic field protected PMT or a SiPMT is to be used for light collection in the side detectors.
The forward TOF wall is located at 7.5 m downstream the interaction point. Proceeding from the
FS angular acceptance and taking into account deviations in the FS dipole of the particles with
momenta higher than ∼ 1

15
of the p̄ beam momentum, the dimensions of the forward TOF wall
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are taken to be 1.4 m in vertical and 5.6 m in horizontal direction. It consists of 66 scintillation
counters. A scintillation counter consists of a vertical strip made of plastic scintillator BC408
of 1.5 cm thickness (material budget X

X 0
≈ 3.5%). The strip is coupled at the both edges via

light-guides to a PMT Hamamatsu R2083 or R4998. The central part of the wall which is close
to the beam pipe consists of 20 scintillation counters with 140 ∗ 5 cm2 strips, and left and right
outer parts consist of 46 scintillation counters with 140∗10 cm2 strips. Granularity indicated here
for the forward TOF and in particular for the side TOF detectors is optional. It is subject to
careful MC simulations and experimental investigations of the TOF resolution. The light-pulse
amplitude and shape at each end of the strip depends on a particle hit position which is to be
specified in off-line analysis using tracking information. The (off-line) time resolution of a TOF
wall-scintillation counter is estimated to be 50-60 ps. It is not yet decided which equipment is to
be used as a ”start” pulse for the time of flight. If no start counter is available a possibility to
measure time correlation between two stop counters is considered provided at least two particles
from an event is detected by the TOF wall [21]. In all the cases the time resolution of both
pulses (start and stop or two stop ones) not worse than 50-70 ps is needed. The overall TOF time
resolution then is expected to be on the level of ∼100 ps.

MC simulations of the detector capabilities. The MC-simulations presented in this section
have been performed using DPM generator. A simple cut on the FS acceptance has been applied.
No magnetic field has been included in the simulations such that a track has been approximated
with a straight line coming out of the interaction point. This is a very coarse approximation
for low momentum particles, which however underestimates the TOF length and, respectively,
overestimate the value of TOF resolution. The hadron rates calculated in this approach for 4π
acceptance and for the FS acceptance at luminosity 2 ·1032cm−2s−1 are given in Table 3 and Table
4, respectively.

Table 3: 4π rates for various beam momentum and particles.

Beam momentum σtot 4π rates π± K± Proton Pbar

(GeV/c) (mbarn) (1/sec) (1/sec) (1/sec) (1/sec) (1/sec)
2 90 1.8 ∗ 107 7.17 ∗ 106 6.47 ∗ 104 2.23 ∗ 106 2.25 ∗ 106

5 64.8 1.3 ∗ 107 5.4 ∗ 106 6 ∗ 104 1.37 ∗ 106 1.36 ∗ 106

15 50.8 1 ∗ 107 4.15 ∗ 106 1.48 ∗ 105 9.16 ∗ 105 9.18 ∗ 105

Table 4: Forward Spectrometer rates for various beam momentum and particles.

Beam momentum Forward rates π± K± P P̄
(GeV/c) (1/sec) (1/sec) (1/sec) (1/sec) (1/sec)

2 1.8 ∗ 106 3.9 ∗ 105 2 ∗ 103 1.2 ∗ 104 1.07 ∗ 106

5 2.17 ∗ 106 6 ∗ 105 7.8 ∗ 103 3.8 ∗ 104 9.5 ∗ 105

15 2.93 ∗ 106 9.56 ∗ 105 4.7 ∗ 104 3.2 ∗ 104 8.2 ∗ 105

Distributions of the particle rates over the TOF detector are not uniform and momentum depen-
dent. The forward yields ( dN

dcosθ
, where θ is the scattering angle) are peaked at θ = 0 with various
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Figure 38: Anti-proton hit distributions for p̄ momentum in the range 12 to 15 GeV/c (mostly
elastically scattered anti-protons). Upper panel: areal distribution over XY-plane at the position
of the forward TOF wall (X=Y=0 are primary beam coordinates), lower panel: count rate per a
scintillation counter. Note that the bin width is taken equal to the central strip width (5 cm).
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Figure 39: Reconstructed masses for hadrons of a negative charge.

slopes. As seen from Table 4 the highest rate is expected for anti-protons, mostly for elastically
scattered anti-protons (see the peak of elastic p̄ scattering in Fig.37). As the cross section for elas-
tic scattering is a very steep function of θ practically all anti-protons are emitted within the FS
acceptance. In Fig.3.9 anti-proton hit distributions for p̄ momentum in the range 12 to 15 GeV/c
are shown. As seen from the count rate per a scintillation count (lower panel) this rates are low
enough even in the central part of the detector and does not restrict its operational capabilities.
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Figure 40: Separation power vs . particle momentum, dashed line - 3σ separation

A momentum p and charge sign of a forward emitted particle is measured by tracking through
the dipole magnet of the FS with momentum resolution typically better than 1%.

For a detected particle its mass m can be expressed as

m = p

√
t2

tc
2
− 1. (5)

Here tc = L/c where c is speed of light, L is the TOF length, i.e. the length of the particle track
counted from the interaction point to a ”stop” counter; t is the measured time of flight, t

tc
= 1

v

where v is the particle velocity (c = 1). A fractional uncertainty in determination of the particle
mass is

δm

m
=

√
(
δp

p
)2 + γ4(

δt

t
)2, (6)

where γ = 1√
1−v2 . The TOF wall is positioned at 7.5 m from the target which corresponds to

tmin
c = 25 ps. Due to relativistic factor γ4 the TOF resolution of ∼100 ps dominates the mass

smearing for relativistic particles while the momentum resolution of 1% has just a little effect.
An additional δm may come form uncertainty in L (or tc) due to tracking in the magnetic field
of the FS dipole. It is estimated to be on the level of a few ps and ignored. An example of
the forward TOF wall capability to identify hadrons is demonstrated in Fig.39 where the hadron
masses calculated with the help of Eq.5 are plotted versus the hadron momentum.

Separation power. PID quality of the TOF wall detector is quantified using a value of Separation
Power SP defined in section 4.1 of this document. In these calculations the binning has been done
in the hadron momentum in the range 0.5 to 4 GeV/c (7 bins). In each bin the hadron mass
distribution is approximated with a gaussian. The central (mass) position has been fixed according
to PDG while the dispersion σmass is found by fit to the experimental histogram. Separation powers
for pairs of particles π/K and K/P calculated in such a way are presented in Fig.40.
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3.10 Forward Calorimeter

The forward calorimeter will consist of two parts: the electromagnetic calorimeter and the hadron
calorimeter serving also as a muon filter.

3.10.1 Electromagnetic calorimeter

For the electromagnetic calorimeter, for its large size and high energies of impinging particles, the
most suitable seems the Shaslyk technique, allowing to make a reasonable compromise between
the energy resolution and the price. It has been proved to work well in other experiments, e.g.
E865 [23] and KOPIO [24]. In the latter the achieved energy resolution amounted to 4%/

√
E.

The calorimeter consists of modules built a form of lead-scintillator sandwiches that are read out
via wave length shifting (WLS) fibers penetrating them through prefabricated holes.The module
size of 11× 11 cm2 is a compromise between the position resolution and the cost and complexity.
The major features of the planned electromagnetic calorimeter are as follows:

• 400 layers of Pb and scintillator (ca. 20 X0),

• effective Moliere radius 60 mm,

• thickness of a single lead layer d(Pb) = 0.275 mm,

• thickness of a single scintillator layer d(Scint.) = 1.5 mm,

• number of fibers per module: 72 or 144,

• readout: PMT

• design resolution:4%/
√
E,

• active area of 297× 143 cm2, corresponding to 27× 13 modules.

Several test setups with modules of different sizes have been built in IHEP–Protvino, and now
they are a subject of ongoing beam tests. Fig. 41 presents a test setup of 3 × 3 modules and a
layout of unpacked modules. The results of the tests are very encouraging. Based on the beam
tests performed in 2007, the energy resolution was parametrised as follows:

σE

E
=

a

E
⊕ b√

E
⊕ c [%]

where a = (3.5± 0.3) GeV, b = (2.8± 02) GeV
1
2 , c = 1.3± 0.04. The numbers are in line with the

MC simulations and correspond to the energy resolution of 4.7% at 1 GeV and 1.9% at 5 GeV,
which is comparable with the design value. Further test beam studies will include prototype
energy and position resolution for modules of 55×55 mm2 size as well as test of π0 reconstruction
capabilities in the energy range up to 15 GeV.

A series of simulations, based on the so-called old code, have been done in order to investigate
performance of calorimeter of this type for electron/pion separation. Different momenta (1 GeV/c
and 5 GeV/c) of electrons and pions as well as different lateral dimensions of the modules were
simulated. Detector response and cuts imposed in order to select electrons of 5 GeV/c momentum
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Figure 41: Left: a test setup of 9 modules, right: unpacked shashlyk modules.

Figure 42: Detector response to single pion (red) and single electron (black) events is shown in
terms of number of reconstructed clusters (top), number of fired modules (middle) and recon-
structed energy (bottom). Cuts shown by the dashed lines were used to select electrons.

in the 110× 110 mm2 modules are shown as an example of the procedure, see fig. 42. A particle
was identified as an electron if the associated signal fulfilled the three cuts presented in fig. 42
by the dashed lines. Results of the simulations are collected in the tables 5 and 6. For both
investigated momenta, reduction of the module size from 110× 110 mm2 to 55× 55 mm2 reduces
the number of the pions misidentified as electrons by a factor of two.
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Module size [mm2] e− identified [%] π− misidentified as e− [%]
30× 30 84.6 0.2
55× 55 93.3 0.4

110× 110 97.4 0.8

Table 5: Results of PID using the shashlyk calorimeter for 5 GeV/c electrons and pions.

Module size [mm2] e− identified [%] π− misidentified as e− [%]
55× 55 96.2 4.7

110× 110 98.1 8.7

Table 6: Results of PID using the shashlyk calorimeter for 1 GeV/c electrons and pions.

3.10.2 Hadron calorimeter

The hadron calorimeter will be placed around 8 m downstream the target and extends 440 cm
horizontally and 180 cm vertically. Its task is to measure energies of neutrons and antineutrons,
large numbers of which bombard the region of acceptance covered by the Forward Spectrometer.
Apart from that, it gives fast signal for triggering on reactions with forward scattered hadrons.
Last but not least, the detector will be used to discriminate between charged hadrons and muons.
This will be achieved by combining the energy loss information with the information obtained
from the muon counters.

Until recently, the option that was considered for hadron calorimetry at PANDA was a detector
of MIRAC type [26]. In this design layers of steel are sandwiched with layers of scintillator and
read out via WLS fibres attached to PMTs. The obtained energy resolution for the hadronic
shower amounted to 0.034⊕ 0.34/

√
E[GeV ] It was planned to use that detector as a muon filter

by placing muon counters behind it.

Currently another option is being investigated and seems more adequate solution for the PANDAneeds,
called Hadron & Muon Identifier based on a Range System, HMI/RS [27]. In this design sections
of steel–scintillator sandwich are interlaced with gas detectors allowing observation of the cascade
or tracking of muons. HMI/RS allows much better muon identification, for the price of only
slight deterioration of the relative energy resolution. Currently the detector is in the phase of MC
optimisation and prototyping [27].

4 Tools

In this section the TAG work is described. To evaluate the performance of the detectors the PID
TAG defined the ”Separation Power” as the right tool. With the help of ”Phase Space Plots”
(section 4.2) the angular coverage and the corresponding particle momenta could be determined.
The ”Fast Simulation” (section 4.3) was used to map the separation power over the full angular and
momentum range. In a second step important reactions and their relevant background channels
were simulated. Thus the regions where a good separation power is needed could be identified
and checked whether the detector performance is sufficient there.
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4.1 Separation Power

This document completely deals with the quality of the particle identification of the projected
PANDA detector. Thus the major issue upon which decisions can be made is a proper definition
of classification quality or performance.

The according concept chosen for that purpose called ’Separation Power’ bases on the assump-
tion that the particular observables of objects of different classes exhibit more or less gaussian
distributions.

Consider the situation illustrated in fig. 43:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2
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 for two distributionsσIllustration for separation power N

Figure 43: Illustration for the definition of separation power.

There are plotted two gaussian distributions G1(x) ≡ G(x;µ1, σ1) and G2(x) ≡ G(x;µ2, σ2) with
mean values µ1 = 1.5 and µ2 = 3.5 and standard deviations σ1 = 0.25 and σ2 = 0.5. This could
be e. g. the probability density distributions of the dE/dx measurements for two particle species
in a small momentum range. Obviously the distributions are separable quite reasonably, but what
is the measure for the separation potential?

A proper definition would be to define a particular classificator, e.g. every particle with property
x0 < 2 is considered as member of class 1 (red). Then one can determine two quantities which
are of relevance for the quality of classification. The first one is the efficiency, which is part of the
distribution 1 (or a random sample of measurements following this distribution) which is identified
correctly analytically corresponding to the integral

ε =

∫ x0

−∞
G1(x) dx (7)

for a normalized Gaussian. The second quantity is the misidentification level given by the integral

mis-id =

∫ x0

−∞
G2(x) dx (8)

which is part of the distribution 2 in the same region thus identified incorrectly as being of class
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1. These two values would define clearly the performance of the classificator3. But this solution
cannot be applied in case when one does not want to define a particular selector. It rather has to
be defined a measure for the prospective performance of a possible selector.

Exactly this is the aim of the separation power Nσ which relates the distance of the mean values
d = |µ1−µ2| of the two distributions to their standard deviations σ1 and σ2. The usual unit of Nσ

is ’number of gaussian sigmas of the separation potential’, which is supposed to relate the number
with gaussian integral values.

There are actually a lot of different definitions for that quantity on the market but it has been
found an agreement within the PID TAG on the following definition:

Nσ =
|µ1 − µ2|
σavg

=
|µ1 − µ2|

(σ1/2 + σ2/2)
(9)

This relationship is illustrated in fig. 43. The black dashed line marks the position x0 between
the two distributions, for which the differences to each mean value |µ1 − x0| = Nσ · σ1/2 and
|µ2 − x0| = Nσ · σ2/2 are the same in terms of σ’s.

This means a separation of e. g. Nσ = 4σ corresponds to a gaussian integral

I =

∫ µ+4σ/2

−∞
G(x;µ, σ) dx = 0.9772 (10)

which shall express an efficiency around ε ≈ 97.7% or a mis-ID level around mis=100%−97.7% ≈
2.3% or both. This integration up to half the number of sigmas Nσ/2 seems a bit contra intu-
itive but is common notion and therefore has been kept for the considerations in this document.
Another feature of this definition is that it is symmetric for both classes or distributions, even
with different σ’s. Furthermore for the particular case of normalized gaussian distributions and a
selector requiring x < x0 for classifying class 1 objects in the upper example, the efficiency ε and
purity π for this selection have the same value, since

ε =

∫ x0

−∞G1(x) dx∫ +∞
−∞ G1(x) dx

=

∫ x0

−∞G1(x) dx

1
=

∫ x0

−∞G1(x) dx∫ x0

−∞G1(x) dx+
∫ +∞

x0
G1(x) dx

(11)

=

∫ x0

−∞G1(x) dx∫ x0

−∞G1(x) dx+
∫ x0

−∞G2(x) dx
=

∫ x0

−∞G1(x) dx∫ x0

−∞G1(x) +G2(x) dx
= π (12)

Tab.7 lists on the left hand side the mis-id levels 1 −
∫
G(x)dx with one-sided (1s) and two-

sided (2s) gaussian integrals for different values of Nσ, on the right hand side the corresponding
values of the separation power for given levels of mis-id according to the upper definition. It
shall be emphasized again that for given values Nσ the integration is only performed up to Nσ/2,
therefore the mis-id levels might seem surprisingly high for given number of σ’s separation.

Taking into account that quantities in reality never have gaussian shape the values σ in fact are
not necessarily gaussian sigmas but calculated as the root-mean-square (which actually is the
standard deviation)

σrms =

√∑
i

(xi − µ)2 (13)

3For Bayes’ classification a flux correction would have to be taken into account additionally. This requires
of course knowledge about a posteriori probabilities of particle fluxes which not necessarily is available since
significantly dependent on the given trigger and reaction type.
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what in case of gaussian distributions would be indeed identical with the gaussian σ from above.
For the given example in fig. 43 the definition (9) computes to

Nσ,1 =
2

0.25/2 + 0.5/2
=

2

0.375
= 5.333 .

Another issue which directly is connected with the definition above is the question how to define
the combined separation Nσ,tot e.g. for values Nσ,i achieved by various detector components to
express the overall performance. The agreement of the PID-TAG concerning this was to consider
the quadratic sum

Nσ,tot :=

(∑
i

N2
σ,i

)1/2

(14)

as a good measure. In order to evaluate the goodness of that expression it first of all is necessary to
make aware what meaning the value Nσ has in terms of probability. When considering something
similar to equation (10) as a appropriate measure, namely the integral of a Gaussian from −Nσ/2
to +Nσ/2 the expression for the corresponding probability of mis-identification is given by

Pmis(Nσ) = 1−
∫ +Nσ/2

−Nσ/2

G(x;µ = 0, σ = 1) dx (15)

which directly defines the mis-identification probability for n statistically independent separation
capabilities as the product

Pmis,tot = Pmis(Nσ,1)× · · · × Pmis(Nσ,n) (16)

in addition. Hence equation (15) implicitly specifies Nσ,tot as that value where the integral yields
exactly Pmis,tot. This procedure has been pursued for two values Nσ,1 and Nσ,2 as presented in fig.
44. In (a) the combined separation power is shown as 2-dimensional function of the two input
values, (b) presents the difference

∆ =
∣∣∣Nσ,tot −

√
N2

σ,1 +N2
σ,2

∣∣∣ (17)

of the resulting value and equation (14), which obviously reasonably reproduces the correct value
with a maximum deviation of about 0.5σ in the range of single values up to Nσ = 6.

4.1.1 Parameterization of the Electromagnetic Calorimeter

Although not implemented in the Fast Simulation, a parameterization of part of the response
of the EMC has been pursued for the estimation of an overall PID quality. It is based on fully
simulated data but only information about electron-pion-separation was taken into account up to
now. Fig. 45 (a) shows the distributions of the parameterized ratio of the calibrated cluster energy
in the electromagnetic calorimeter and the reconstructed track momentum Eclus/p for simulated
electrons (green) and pions (black). The source for modelling the parameterizations can be found
in the PANDA Physics Book [3]. It is clearly visible that above momenta of approximately 500
MeV this quantity is a powerful tool to separate electrons from pions, demonstrated in fig.45 (b),
where the separation power has been determined dependent of the track momentum p by the
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Figure 44: (a) Graphical representation of the combined separation power Nσ,tot of two values

Nσ,1 and Nσ,2, (b) the corresponding difference
∣∣∣Nσ,tot −

√
N2

σ,1 +N2
σ,2

∣∣∣.

(a) (b)

Nσ mis-id (1s) [%] mis-id (2s) [%] mis-id [%] Nσ (1s) Nσ (2s)
1.0 30.854 61.708 10.000 2.6 3.3
2.0 15.769 31.538 5.000 3.3 3.9
3.0 6.681 13.361 1.000 4.6 5.1
4.0 2.254 4.507 0.500 5.1 5.6
5.0 0.621 1.242 0.100 6.2 6.6
6.0 0.133 0.266 0.050 6.6 7.0
7.0 0.023 0.047 0.010 7.4 7.8
8.0 0.003 0.006 0.005 7.8 8.1
9.0 0.000 0.001 0.001 8.5 8.8

Table 7: Relation between separation power and mis-id level

definitions given above. Since no θ dependence was available this separation power is assumed to
be constant over the complete θ range.

According to the software chapter of the PANDA Physics Book e/π separation is the most difficult
one. Therefore this distribution is assumed to also hold for separating electrons from any other
particle species.

As a very naive assumption without a proof the additional separation power provided by the EMC
for any other particle combination is taken to be 1σ over the complete phase space covered by the
EMC.
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Figure 45: (a) Parameterized distribution of Eclus/p for electrons and pions and (b) the resulting
separation power Nσ as function of the track momentum p.
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4.1.2 Mapping Separation Power

For the purpose of illustration the relationship between kinematic distributions of physics channels
and the PID quality the separation power defined in (9) has been determined as 2-dimensional
histogram in phase space (p, θ). Therefore it was necessary to computed the mean value µ and
standard deviation σ for every bin i with [pi . . . pi + dp; θi . . . θi + dθ] for bin widths dp and dθ for
every detector and particle species.

One technical remark: To avoid the computation of (x − µ) for every measurement in order to
determine σ, which is very time consuming for large datasets, the relationship

σ2 =

∑
x2

i −N · µ2

N − 1
=
N ·

∑
x2

i − (
∑
xi)

2

N2 −N
(18)

has been exploited which does not require a previous calculation of the mean value µ = x̄.

In order to evaluate the contributions of the various detectors to the overall classification potential,
the separation power defined above has been determined for every single detector component and
all possible particle combinations, which add up to the following 10 possibilities:

1. e± − µ±, e± − π±, e± −K±, e± − p/p̄,

2. µ± − π±, µ± −K±, µ± − p/p̄,

3. π± −K±, π± − p/p̄,

4. K± − p/p̄.
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The results are determined based upon 5 million isotropic distributed single track events with
particle momenta up to 6 GeV/c.

Figs. 46 and 48 show as examples the p–θ–dependent separation power for e± – π±, π± – K± and
K± – p/p̄ for all 8 detector components

• Micro Vertex Detector (MVD)

• Barrel Time of Flight System (TOF)

• Barrel DIRC

• Disc DIRC

• Ring Image Cherenkov Detector (RICH)

• Electro Magnetic Calorimeter (EMC)

• Straw Tube Tracker (STT)

• Time Projection Chamber (TPC)

under investigation. The color codes in these 2 dimensional representations correspond to the
numbers of σ’s (Nσ) of separation with a cutoff Nσ > 8. Thus in the red regions are possibly
values above that limit.

To get an impression of the overall particle identification performance the values Nσ,i from the
different detectors i have been combined by quadratic summation according to (14) under the
assumption of statistically uncorrelated Nσ,i. Since there are two central tacker options (STT and
TPC) which cannot contribute to the same total separation, two different scenarios with either
the STT or the TPC are considered separately. Fig. 49 shows the combined information for the
STT option and fig. 50 for the detector setup with the TPC as central tracker. All maps are
based on the requirement of positive identification of a particle species. This means, that particle
type A is only considered to be distinguishable from another particle type B when both create a
signal in the particular detector and the given phase space region.

One should keep in mind that the conclusive power of separations involving electrons and muons
is limited for the time being since only limited information from the electromagnetic calorimeters
and none for the muon detectors has been incorporated so far, which has significant impact on
electron and muon identification respectively.

4.2 Phase Space Plots

The question which has to be answered concerning particle identification is not only how good the
classification works or has to work, but also in which region of the phase space one needs good
separation, and in which parts one possibly doesn’t need almost any.

Therefore it is a crucial task to visualize the kinematic behaviour of various important physics
channels to get a better insight to the above issue. Furthermore not only kinematic distributions
of signal events are relevant, since good PID is only useful in cases where kinematic overlap of
particles of species A from signal events and particles of species B from background events really
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Figure 46: Map of separation power for e±–π± separation. Color code corresponds to Nσ = 0 . . . 8.
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Figure 47: Map of separation power for π±–K± separation. Color code corresponds toNσ = 0 . . . 8.
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Figure 48: Map of separation power for K±–p/p̄ separation. Color code corresponds to Nσ =
0 . . . 8.
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Figure 49: Combined map of Separation Power with STT as central tracker option including the
TOF system. Color code corresponds to Nσ = 0 . . . 8.



4 TOOLS 56

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100120140160180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
µCombined (TPC option): e - µCombined (TPC option): e - 

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100120140160180

p 
[G

eV
/c

]
0

1

2

3

4

5

6
πCombined (TPC option): e - πCombined (TPC option): e - 

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100120140160180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
Combined (TPC option): e - KCombined (TPC option): e - K

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100120140160180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
Combined (TPC option): e - pCombined (TPC option): e - p

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100120140160180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
π - µCombined (TPC option): π - µCombined (TPC option): 

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100120140160180

p 
[G

eV
/c

]
0

1

2

3

4

5

6
 - KµCombined (TPC option):  - KµCombined (TPC option): 

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100120140160180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 - pµCombined (TPC option):  - pµCombined (TPC option): 

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100120140160180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 - KπCombined (TPC option):  - KπCombined (TPC option): 

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100120140160180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 - pπCombined (TPC option):  - pπCombined (TPC option): 

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100120140160180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
Combined (TPC option): K - pCombined (TPC option): K - p

Figure 50: Combined map of Separation Power with TPC as central tracker option including the
TOF system. Color code corresponds to Nσ = 0 . . . 8.
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Figure 51: Combined map of Separation Power with STT as central tracker option without the
TOF system. Color code corresponds to Nσ = 0 . . . 8.
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Figure 52: Combined map of Separation Power with TPC as central tracker option without the
TOF system. Color code corresponds to Nσ = 0 . . . 8.
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exists. In scenarios where particles of the same type A appear in signal as well as background
events in the same phase space location the background suppression cannot be improved by means
of PID.

Following a request of the PID TAG phase space plots from all the reactions relevant for the
physics book were produced. The set of plots shows for each particle species of the reaction the
particle momentum versus theta angle.

Tab. 9 lists part of the benchmark channels discussed in the PANDA Physics Booklet and some
additional ones to study inclusive open charm analysis together with relevant background channels.
In particular channels were investigated which might suffer significantly from insufficient PID
capabilities4.

The acronym DPM in the table refers to generic background evens generated with the Dual Parton
Model generator. In the last column references to the corresponding figures are given. Tab. 8
gives some standard decay channels which apply to cases where nothing different is specified in
tab. 9.

In figs. 53 - 57 kinematic distributions (momentum p vs. dip angle θ) at various beam momenta
are shown for some of the signal-background scenarios listed in 9, one particle species per plot.
To easier spot signal and background, the latter ones are colored blue.

Particle Decay channel
J/ψ 50% e+e−, 50% µ+µ−

η π+π−π0

D0 K−π+

D+ K−π+π+

D∗+ 50% D0π+,50% D+π0

D∗0 D0π0

D+
s φπ+

φ K+K−

Λ pπ−

π0 γγ

Table 8: Standard decay channels for some particles

4.3 Fast Simulation

In order to get information about phase space (i.e. momentum-polar angle dependence) coverage
of the different PID relevant subsystems maps of separation power have been generated. They
are based on fast simulations of single track events, i.e. the particles properties are modified with
an effective parameterization of detectors responses and the PID information is estimated and
attached to the resulting particle candidate. Since no microscopic simulation is performed and no
exact geometry information is taken into account, the accuracy of this approach is limited, the
computation time on the other hand is orders of magnitude shorter offering the possibility to do
studies with higher statistics.

4Signal channels with background reactions comprising the same final state can only be identified due to different
kinematic behaviour, which goes beyond the capabilities of PID
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Figure 53: p̄p→ J/ψπ+π− @ 5.609 GeV/c (top), p̄p→ J/ψ2π0 @ 12.3485 GeV/c (bottom)
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Figure 54: p̄p→ φφ @ 1.5, 6.0, 15.0 GeV/c
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Figure 55: p̄p→ Λ0Λ̄0 @ 1.4601 GeV/c
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Figure 56: p̄p→ e+e− @ 3.30 GeV/c
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Figure 57: p̄p→ D+
s D

∗
s0(2317)− @ 8.847 GeV/c
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Signal Background pp̄ [GeV/c] Fig.

J/ψ2π0 π+π−2π0 5.609 / 6.232 /8.682

10.295 / 12.349 53

J/ψπ+π− 2π+2π− 5.609 / 6.232 / 6.988

8.682 / 10.295 / 12.349 -

2π+2π−π0 6.990 / 8.7 -

J/ψη 2π+2π− 6.080 / 6.990 / 8.7 -

3π+3π− 6.080 / 6.990 / 8.7 -

φφ 2π+2π− 1.5 / 6.0 / 12.0 / 15.0 54

3π+3π− 1.5 / 6.0 / 12.0 / 15.0 -

Λ0Λ̄0 Σ0Σ̄0 1.914 / 3.101 / 6.0 55

DPM 1.460 / 8.0 / 10.0 -

Ω−Ω̄+ DPM 4.954

Λ+
c Λ−

c D+D− 10.187

DPM 10.187

e+e− π+π− 1.7 / 3.3 / 7.9 / 10.9 / 15.0 56

D+
s D

∗
s0(2317)− DPM 8.847 57

3π+3π−π0 8.847 -

D+
s D

−
s γ 3π+3π− 8.847 -

DPM 7.361 / 7.746 / 8.0 / 12.0 / 15.0 -

D∗0D̄∗0γ DPM 7.746 / 8.0 / 12.0 / 15.0 -

D∗+D∗−γ DPM 7.746 / 8.0 / 12.0 / 15.0 -

D0D̄0γ DPM 6.488 / 8.0 / 12.0 / 15.0 -

D+D−γ DPM 6.488 / 8.0 / 12.0 / 15.0 -

Table 9: Table of Phase Space Channels

4.3.1 General Technique

In contrast to microscopic simulations using software systems like Geant or Fluka the Fast Simu-
lation is based on acceptance filtering and effective parameterization of all observables of the par-
ticular subsystems. Underlying assumption is that the detector system will be able to reconstruct
the true particles properties like momentum, direction, energy, charge and particle identification
information with uncertainties which are basically uncorrelated and can be described reasonable
by parametric models. That could, as simple example, be a gaussian uncertainty for momentum
reconstruction with δp/p = σp = 2%, which will be used to modify the true (i.e. generated)
track parameters accordingly. Additionally a simple geometric acceptance requirement will decide
whether a track has been detected by a particular detector component or not.

There is a lot of freedom for the implementation of the subsystems, but a minimalistic detector
description comprises

• Sensitivity information: Detects charged or neutral particles or both?
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• Polar angle coverage: θmin < θ < θmin

• Gaussian resolution of observables: σ1, . . . , σn

In order to apply these simulation scheme for every trackable particle coming from the event
generator the following procedure is processed:

1. For all detectors Dj, 1 < j < m

• In case Dj detects the particle, collect resolution information for all measurable quan-
tities.

2. When no detector detected the track, skip it.

3. Merge all resolution information; when e.g. the particle has been detected by n devices
capable of measuring momentum p with resolutions σp,1, . . . , σp,n, the total resolution is

σp =

(
n∑

i=0

1

σ2
p,i

)− 1
2

4. Modify the according quantities x of the original track in the way x′ = x + δx, with δx
randomly chosen from gaussian distribution G(µ = 0, σx)

5. Create PID information according to the particles properties and attach to the particle; add
particle to the track list

6. (Optional) Create secondary particles related to particles properties and add to the track
list

With the so prepared track list analysis can be performed. The interface for doing that is exactly
the same as the one for fully simulated events.

Since this document is focussing on PID the relevant features will be describe in more detail in
the following chapters. This will be done effect– or observable–wise instead of detector–wise, since
the observed quantities

• specific energy loss dE/dx (MVD, TPC, STT)

• Cherenkov angle θC (Barrel DIRC, Disc DIRC, RICH)

• reconstructed squared mass m2 (TOF)

• EMC related measurements like Ecluster/p or Zernike momenta

• signals from Muon Chambers

govern the PID quality and performance and thus are a better ordering criterion. Unfortunately
the latter two informations from electromagnetic calorimetry and the muon detectors are not
implemented in the Fast Simulation for the time being.
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4.3.2 Tracking Detectors

Although not of direct impact to the field of PID the process of tracking delivers vital information
for many of the PID relevant systems. Most of these like e.g. the Time-of-flight (TOF) system
or Cherenkov devices (DIRCs and RICH) do not allow for performing a stand alone position
measurement, thus their information have to be linked to tracks reconstructed by tracking devices.
In addition for the purpose of evaluating PID likelihood functions one usually needs to compute
expected values for observables like the Cherenkov angle θC or energy loss dE/dx which will be
computed for the reconstructed momentum value of the track. This certainly will differ from
the true momentum value and therefore track reconstruction accuracy has important impact on
likelihood based classification methods.

The approach for the reconstruction of momenta in the Fast Simulation nevertheless is a very
simple one assuming a global momentum resolution δp/p for the track reconstruction, since due to
technical reasons the particular detector components cannot exchange information. This implies
that the tracking devices are not able to feed their information into the PID systems.

4.3.3 Energy Loss Parameterization

The computation of the specific energy loss is based on the Bethe-Bloch formula

− dE

dx
= κ · Z

A
· e

2

β2
·
[
ln

(
2meβ

2γ2Tmax

I2

)
− 2β2 − δ

] [
MeV · cm

g

]
(19)

which very precisely takes into account the processes of charged particles interacting with matter.
The formula and detailed information about parameter meanings in this term can be found in
[22].

The expression looks quite complicated but can be evaluated straight forward with momentum
p and mass m given as input. Additionally one has to substitute a lot of other, material related
constants. Since we are not interested in the absolute energy loss but only in relative losses for
different particle species it is not crucial to have very precise knowledge about the fixed parameters.

In order to generate a simulated detector response for detectors capable of measuring dE/dx a
gaussian resolution σdE/dx has been set for each of them. The simulated measured (dE/dx)sim

value thus has been simply computed with formula (19) to(
dE

dx

)
sim

=

(
dE

dx

)
+ δ

(
dE

dx

)
(20)

with randomly chosen value δ(dE/dx) from a gaussian distribution G(µ = 0, σdE/dx).

4.3.4 Cherenkov Angle Parameterization

Basic theoretical information about the origin of Cherenkov radiation can be found elsewhere and
will not be discuss here. The Cherenkov angle defined as the opening angle of the cone of radiation
relative to the direction of the incident charged particles momenta in medium with refractive index
n is given by the expression

θC = arccos

(
1

β · n

)
(21)
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with β = p · c/E being the velocity of the particle. Obviously computation of the expected
Cherenkov angle for any given particle detected by the specific detector is straight forward. Key
ingredient of the parameterization of the detector response is the resolution estimation. In case
of DIRC detectors experience from the working device in the BaBar experiment tells us that the
overall reconstruction resolution of the Cherenkov angle can be based on a single photon resolution
σs.phot. ≈ 10 mrad. Responsible for the overall resolution then exclusively is the number of detected
Cherenkov photons N through

σtot =
σs.phot.√

N
,

which is simple count statistics. This number N has to be estimated and depends on

• the number of generated photons

N0 = 2π · α ·L
(

1

λmin

− 1

λmax

)
· sin2 θC = 2π · α ·L

(
1

λmin

− 1

λmax

)
·
(

1− m2 + p2

p2 · n2

)
(22)

with parameters

– fine structure constant α

– trajectory length L in the radiator material

– mass and momentum m and p of the incident track

– wave length region λmin and λmax where the photon detector is sensitive and

– refraction index n

• the trapping fraction rtrap which is the fraction of the photons kept in the radiator/lightguide
due to total reflection and

• the detection efficiency ε of the photon detector, e.g. a photo multiplier tube (PMT)

In order to derive the path length L in the material one has to distinguish between the different
Cherenkov devices.

In case of the Barrel DIRC on first of all has to compute the curvature due to the motion of a
charged particle in a magnetic solinoidal field B = Bz. The radius r of the circular shape in (x, y)
projection is given by

r =
pt

q ·B
=

3.3356 · pt [GeV/c]

B [T]
. (23)

for a particle with charge q = ±e and transverse momentum pt = p · sin θ. Based on this one can
calculate the entering angle ψ in φ direction to

ψ = arccos
rB

2 · r
(24)

with rB being the radius of the DIRC Barrel i.e. the distance between the bars and the beam
line. Here it is obvious that particles with 2 · r < rB will not hit the detector at all defining a
minimum transverse momentum pt,min. The path length after some geometrical considerations
then computes to

L ≈ dbar ·
√

1

sin2 θ
+

1

tan2 ψ
(25)
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Figure 58: 2-dimensional picture of the trapping fraction for protons in the Barrel DIRC (left)
and the Disc DIRC as a function of momentum p and dip angle θ.

where dbar is the thickness of the radiator bars and θ the dip angle of the helix of the track. The
expression is an approximation because curvature within the bar has been neglected. This leads
to significant wrong values for particles with 2 · r ≈ rB.

For the Disc DIRC and the RICH computing the radiator path length is much simpler. Here
L only depends on the dip angle and the radiator thickness drad resulting in

L =
drad

cos θ
. (26)

Also here no curvature within the radiators has been taken into account. This anyway would lead
to more complicated estimates since angular changes along the radiator path results in systematic
worsening of the Cherenkov angle which is neglected completely.

Finally we still need the trapping fraction rtrap to determine the number of detected photons. There
is no known analytic expression to compute this, thus 2 dimensional lookup tables rtrap(θ, p) for
every particle species have been prepared. Figure 58 shows as an example the trapping fraction
in the Barrel DIRC bars for muons and protons as a function of momentum p and dip angle θ.

With the path length L one can evaluate expression (22) so that the detected number of photons
can be estimated to

N = N ′
0 · ε · rtrap (27)

where the N ′
0 is randomly generated from Poisson distribution with input value λ = N0. This

directly leads to the expected resolution σtot which is taken as the absolute uncertainty of the
measurement of the Cherenkov angle. The simulated measured Cherenkov angle thus has been
computed with formula (21) to

θC,sim = θC + δθC (28)

with randomly chosen value δθC from a gaussian distribution G(µ = 0, σtot).

4.3.5 Time Of Flight Parameterization

From the geometrical point of view the calculation of the expected time of flight of a particle has
similarities to the considerations done in 4.3.4 for the Barrel DIRC, since the TOF detector has



4 TOOLS 67

also cylindrical shape. This requires also the particles with curvatures given by equation (23) to
have a minimum transverse momentum pt to reach the detector and produce a signal.

In order to compute the time of flight tTOF = s/v one in principal only needs the traveled
distance s and the velocity v of the particle. While the latter one is simple to get by via
the particles β = p · c/E, the distance is not so easy to calculated due to the tracks curva-
ture in the magnetic field. Nevertheless the calculation can be simplified exploiting the fact
that the particles motion in z direction is independent of that one in th (x, y) plane. There-
fore t can also be calculated via the ratio of the travelled angle Φ and the angular velocity ω

r
B

r
Φ

Figure 59:
Projection of
particle trajectory
to (x, y) plane in
order to determine
Φ.

tTOF =
Φ

ω
=

1

ω
· 2 arcsin

rB

2r
(29)

with the determination of Φ illustrated in fig. 59. The angular velocity in
the projected plane is given by

ω =
B

3.3356 · E
(30)

for a magnetic field B [T] and E [GeV]. With these expressions one can
derive the true expected time of flight. What now has to be simulated is
the expected accuracy of the measurement achieved by the detector. This
depends on the time resolution on one hand and on the resolution connected
to track reconstruction on the other hand since the transverse momentum
pt = p · sin(θ) is needed to compute the flight length. Concerning the total
time resolution it is assumed to have a start and a stop detector with uncer-
tainties of δt ≈ 100 ps each resulting in a total of σt ≈

√
2 ·100 ps = 141 ps5.

For the momentum resolution only a relative uncertainty σp = δp/p ≈ 2%
for the reconstructed absolute value has been taken into account neglecting
uncertainties of angular measurements.

This results in measured values

t′TOF = tTOF + δt (31)

p′ = p · (1 + δp) (32)

with gaussian distributed deviations δt and δp according to G(µ = 0, σt) and G(µ = 0, σp).
The primes denote from now the ’measured’ or ’simulated’ quantities. Now one basically has to
reverse the process from above to get the simulated reconstructed value for the energy E needed
to compute the squared mass

m′2 = E ′2 − p′2 (33)

which acts as the observable of the TOF detector. Starting point is eq. (30) which forms to
E ′ = B/(3.3356 ·ω′) etc. The resulting term depending only on the quantities t′TOF, p′ and θ looks
like

m′2 =

 B · t′TOF

2 · 3.3356 · arcsin
(

rB

2·3.3356·p′ sin(θ)

)
2

− p′2 (34)

5At the moment it is planned to run without a start detector, which leads to a improved time resolution but
requires to operate the TOF with relative timing.
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4.3.6 Parameter Settings

Tab. 10 presents the complete set of relevant parameters which were used in the Fast Simulation
to extract most of the results presented in this note, in particular in section 5.1.

Meaning Quantifier Value
Global

Magnetic Field Strength B = Bz 2 T
Relative Momentum Resolution σp/p 1 %

Micro Vertex Detector (MVD)
Angular Acceptance [θmin; θmax] [0.0◦; 180.0◦]

Relative dE/dx Resolution σdE/dx 22 %
Straw Tube Tracker (STT)

Angular Acceptance [θmin; θmax] [7.765◦; 159.44◦]
Relative dE/dx Resolution σdE/dx 20 %

Inner Radius RI 15 cm
Time Projection Chamber (TPC)

Angular Acceptance [θmin; θmax] [7.765◦; 159.44◦]
Relative dE/dx Resolution σdE/dx 8 %

Inner Radius RI 15 cm
Barrel DIRC

Angular Acceptance [θmin; θmax] [22.0◦; 140.0◦]
Inner Radius RI 48 cm

Single Photon Resolution σph 10 mrad
Thickness of Slab dS 1.7 cm

Refractive Index of Quarz nQ 1.472
Total Photon Detector Efficiency εPD 7.5 %

Disc DIRC
Angular Acceptance [θmin; θmax] [5.0◦; 22.0◦]

Single Photon Resolution σph 10 mrad
Thickness of Disc dD 1.7 cm

Refractive Index of Quarz nQ 1.472
Total Photon Detector Efficiency εPD 7.5 %

Ring Image Cherenkov Detector (RICH)
Angular Acceptance θmin 0.0◦

αmax (vert.) 5.0◦

αmax (hor.) 10.0◦

Single Photon Resolution σph 10 mrad
Thickness of Radiator dD 1 m

Refractive Index of Radiator nR 1.05
Total Photon Detector Efficiency εPD 7.5 %

Time of Flight system (TOF)
Angular Acceptance [θmin; θmax] [22.0◦; 140.0◦]

Inner Radius RI 38 cm
Total Time Resolution σt 141 ps

Table 10: Parameter Settings used for the Fast Simulation
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5 Evaluation

5.1 Maps of Separation

In order to evaluate the PID performance applied to specific physics channels the information
about

1. kinematic distribution of signal channel

2. kinematic distribution of possible background

3. separation power/mis identification level in phase space

have been combined in the way, that signals distributions for every particle species have been
projected on the according map of separation power with either STT or TPC option. Since the
implementation of the TOF detector is still under investigation at the time of writing, the studies
for both options also have been performed without the information of the TOF system.

Background has been taken into account by punching the according separation map with its
distribution leaving only regions colored where in fact background particles appear.

For instance to determine the PID quality for kaons from p̄p→ D+D−γ reactions at a particular
energy against pions from DPM background, the phase space histogram of kaons from the signal
channel has been projected on the π± – K± separation map which has been punched with the
distribution of pions from DPM events at the same total energy.

This procedure gives access to the information how good a particle type for a specific signal
channel can be identified. In particular it offers the possibility to identify regions with insufficient
PID quality.

As a quantitative measure for the goodness or badness of a certain detector performance the
average separation capability has been determined. Since the value of separation power itself is
less sensitive to smaller differences than the corresponding value for the average mis-identification
fraction fmis (see tab. 7), the latter has been computed over the whole phase space where overlap
between signal and background distributions appear.

For scenarios with fmis > 0.1% the information has been summarized in tables 11 - 13 for the four
different detector setups described above. Listed is the momentum of the antiproton beam pp̄,
the signal channel, the particular particle species of signal and background, the minimum average
separation power of the four setups, the maximum average mis-identification level fmis,max and
the relative ratio fmis,i/fmis,max for the four detector combinations. There are cases where the
ratios are unexpectedly better for setups without additional TOF information; the reason is, that
the averages are determined statistically which leads sometimes to fluctuations. Nevertheless the
order of magnitude is reflected correctly.

Figs. 60 – 62 present the corresponding plots for some selected channels. Each column shows the
results for one particular channel and the four different detector setups in the same order from
top to bottom as given in the list. In tabs. 11 and 13 those channels are marked with a bullet (•)
in the PID column.
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pp̄ [GeV/c] Signal PID min σ mis[%] STT STT+TOF TPC TPC+TOF

1.460 Λ0Λ̄0 π - e • 3.0 7.0 1.0 0.8 0.7 0.6
π - K 4.9 0.7 1.0 0.9 0.8 0.8
p - e 4.8 0.8 0.8 1.0 0.9 1.0
p - π 3.6 3.5 1.0 1.0 0.7 0.7
p - K 3.3 5.0 1.0 1.0 0.6 0.6

1.500 φφ K - π 3.6 3.6 1.0 0.8 0.5 0.5
K - π 3.6 3.6 1.0 0.8 0.5 0.5

1.700 e+e− e - π 5.3 0.4 1.0 1.0 0.7 0.7
3.300 e+e− e - π 5.2 0.4 1.0 1.0 0.8 0.8
4.954 Ω−Ω̄+ π - K 3.8 2.9 1.0 1.0 0.5 0.5

π - p 4.1 2.0 1.0 1.0 1.0 1.0
K - π 2.8 8.3 1.0 1.0 0.7 0.7
K - p 2.6 9.2 1.0 1.0 0.5 0.4
p - π 1.5 22.3 1.0 1.0 0.9 0.9
p - K • 1.7 19.8 1.0 1.0 0.9 0.9

5.609 J/ψ2π0 e - π 5.2 0.5 1.0 1.0 0.9 0.8
J/ψπ+π− e - π 5.2 0.5 1.0 1.0 0.9 0.9

6.000 φφ K - π • 5.5 0.3 1.0 0.3 0.2 0.1
K - π 5.5 0.3 1.0 0.2 0.2 0.1

6.080 J/ψη e - π 5.2 0.4 1.0 0.9 0.9 0.8
e - π 5.1 0.6 1.0 1.0 0.7 0.8

6.232 J/ψ2π0 e - π 5.1 0.5 1.0 0.9 1.0 0.8
J/ψπ+π− e - π 5.1 0.5 1.0 1.0 0.9 0.8

6.488 D0D̄0γ π - K 6.0 0.1 1.0 0.2 0.1 0.0
π - p 4.8 0.8 1.0 0.2 0.4 0.3
K - π 5.4 0.3 1.0 0.2 0.2 0.1
K - p • 4.8 0.8 1.0 0.1 0.1 0.1

D+D−γ π - e 5.2 0.5 1.0 0.7 0.6 0.5
π - K 4.9 0.8 1.0 0.7 0.5 0.5
π - p 3.8 2.8 1.0 0.8 0.6 0.6
K - e 6.1 0.1 1.0 0.7 0.7 0.8
K - π 4.8 0.9 1.0 0.8 0.6 0.7
K - p 3.6 3.6 1.0 0.8 0.6 0.6

6.988 J/ψπ+π− e - π 5.2 0.5 1.0 1.0 0.8 0.9
6.990 J/ψη e - π 5.2 0.5 1.0 1.0 0.8 0.8

e - π 5.2 0.4 1.0 1.0 0.8 0.9
e - π 5.2 0.5 1.0 0.9 0.9 0.8

7.314 D+
s D

−
s γ π - K 4.4 1.3 1.0 0.9 0.6 0.5

π - p 4.1 2.1 1.0 0.8 0.7 0.7
K - π 3.9 2.7 1.0 1.0 0.8 0.8
K - p 3.0 6.4 1.0 0.9 0.6 0.6

7.746 D∗+D∗−γ π - K 4.3 1.5 1.0 0.9 0.7 0.7
π - p 4.4 1.3 1.0 0.8 0.6 0.6
K - π 5.1 0.5 1.0 0.6 0.4 0.4
K - p 4.2 1.7 1.0 0.7 0.5 0.4

D∗0D̄∗0γ π - K • 5.6 0.3 1.0 0.3 0.1 0.0

Table 11:
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pp̄ [GeV/c] Signal PID min σ mis[%] STT STT+TOF TPC TPC+TOF
7.746 D∗+D∗−γ π - p 5.1 0.5 1.0 0.1 0.1 0.0

K - π 5.6 0.3 1.0 0.2 0.2 0.1
K - p 4.8 0.8 1.0 0.1 0.1 0.0

D+
s D

−
s γ π - K 4.3 1.6 1.0 0.8 0.5 0.6

π - p 4.1 2.1 1.0 0.8 0.7 0.7
K - π 3.9 2.5 1.0 1.0 0.8 0.9
K - p 3.0 6.3 1.0 0.9 0.6 0.6

7.900 e+e− e - π 5.4 0.3 1.0 1.0 0.8 0.7
8.000 Λ0Λ̄0 π - K 3.7 3.1 1.0 0.9 0.6 0.7

π - p 3.4 4.5 1.0 0.9 0.6 0.6
p - π 5.6 0.3 1.0 0.1 0.1 0.0
p - K 5.4 0.3 1.0 0.1 0.1 0.0

D∗0D̄∗0γ π - K 5.4 0.4 1.0 0.2 0.1 0.0
π - p 5.1 0.5 1.0 0.2 0.1 0.1
K - π 5.6 0.3 1.0 0.2 0.1 0.1
K - p 4.8 0.8 1.0 0.1 0.1 0.1

D+D−γ π - K 4.5 1.2 1.0 0.7 0.5 0.5
π - p 3.8 2.8 1.0 0.8 0.7 0.7
K - π 4.7 0.9 1.0 0.8 0.6 0.6
K - p 3.6 3.5 1.0 0.8 0.6 0.6

D0D̄0γ π - K 5.4 0.4 1.0 0.2 0.1 0.0
π - p 4.8 0.8 1.0 0.4 0.4 0.4
K - π 5.5 0.3 1.0 0.4 0.3 0.2
K - p 4.6 1.0 1.0 0.3 0.3 0.3

D+
s D

−
s γ π - K 4.3 1.6 1.0 0.8 0.6 0.5

π - p 4.1 2.0 1.0 0.8 0.6 0.7
K - π 3.9 2.6 1.0 0.9 0.8 0.8
K - p 3.1 6.3 1.0 0.9 0.7 0.7

D∗+D∗−γ π - K 4.1 2.1 1.0 1.0 0.8 0.8
π - p 4.2 1.9 1.0 0.9 0.7 0.8
K - π 5.2 0.5 1.0 0.5 0.5 0.6
K - p 4.2 1.7 1.0 0.6 0.4 0.5

8.682 J/ψπ+π− e - π 5.2 0.4 1.0 0.9 0.8 0.7
J/ψ2π0 e - π 5.3 0.4 1.0 0.9 0.9 0.8

8.700 J/ψη e - π 5.2 0.5 1.0 0.8 0.8 0.7
e - π 5.3 0.4 1.0 1.0 0.9 0.8
e - π 5.3 0.4 1.0 1.0 0.8 0.7

8.847 D+
s D

∗−
s0 π - K • 5.2 0.5 1.0 0.2 0.1 0.0

π - p 4.5 1.2 1.0 0.6 0.6 0.6
K - π 4.2 1.8 1.0 1.0 0.7 0.8
K - p 2.8 7.8 1.0 1.0 0.7 0.7
K - π 4.2 1.9 1.0 1.0 0.7 0.6

D+
s incl K - π 4.0 2.4 1.0 1.0 0.8 0.8

10.000 Λ0Λ̄0 π - K 3.8 2.7 1.0 1.0 0.7 0.7
π - p 3.4 4.6 1.0 1.0 0.7 0.7
p - π 5.5 0.3 1.0 0.1 0.1 0.1
p - K • 5.4 0.4 1.0 0.1 0.1 0.0

Table 12:
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pp̄ [GeV/c] Signal PID min σ mis[%] STT STT+TOF TPC TPC+TOF
10.187 Λ+

c Λ−
c π - K 4.3 1.5 1.0 0.9 0.6 0.6

π - p 3.6 3.7 1.0 0.9 0.7 0.8
K - π 4.5 1.2 1.0 1.0 0.8 0.8
K - p 3.4 4.6 1.0 0.9 0.7 0.7
p - π 3.5 4.1 1.0 0.9 0.9 0.8
p - K 3.5 4.1 1.0 1.0 0.8 0.8
π - K • 4.3 1.7 1.0 0.8 0.6 0.6
K - π 4.5 1.2 1.0 1.0 0.8 0.8
p - π 3.5 4.0 1.0 1.0 0.8 0.9
p - K 3.5 4.1 1.0 0.9 0.8 0.8

12.000 D∗0D̄∗0γ π - K 5.6 0.3 1.0 0.3 0.2 0.1
π - p 5.1 0.5 1.0 0.4 0.4 0.3
K - π 5.1 0.5 1.0 0.8 0.6 0.5
K - p 4.8 0.8 1.0 0.4 0.4 0.3

D+
s D

−
s γ π - K 4.4 1.4 1.0 0.9 0.6 0.7

π - p 4.0 2.2 1.0 0.9 0.7 0.7
K - π 4.2 1.7 1.0 1.0 0.8 0.8
K - p 3.2 5.3 1.0 1.0 0.7 0.8

D+D−γ π - K 4.6 1.0 1.0 0.7 0.6 0.6
π - p 3.8 2.8 1.0 0.8 0.7 0.7
K - π 4.7 0.9 1.0 1.0 0.7 0.7
K - p 3.7 3.1 1.0 0.9 0.7 0.7

D0D̄0γ π - K 5.7 0.2 1.0 0.3 0.2 0.2
π - p 5.0 0.6 1.0 0.6 0.5 0.4
K - π 5.0 0.6 1.0 0.8 0.6 0.5
K - p 4.8 0.8 1.0 0.5 0.4 0.3

D∗+D∗−γ π - K 3.7 3.1 1.0 1.0 0.7 0.7
π - p 4.4 1.4 1.0 0.8 0.7 0.7
K - π 5.0 0.6 1.0 0.9 0.7 0.7
K - p 4.3 1.6 1.0 0.7 0.7 0.5

φφ K - π 4.8 0.8 1.0 0.8 0.6 0.6
15.000 D+D−γ π - e 5.4 0.3 1.0 0.8 0.7 0.6

π - K 4.8 0.9 1.0 0.8 0.5 0.6
π - p 3.9 2.5 1.0 0.9 0.7 0.7
K - π 4.7 0.9 1.0 1.0 0.7 0.8

e+e− e - π 5.5 0.3 1.0 1.0 0.8 0.9
D∗+D∗−γ π - e 4.5 1.3 1.0 0.9 1.0 0.9

π - K 3.6 3.4 1.0 1.0 0.7 0.7
π - p 4.2 1.7 1.0 0.9 0.7 0.8
K - p 4.3 1.6 1.0 0.7 0.5 0.6

D∗0D̄∗0γ π - e 6.2 0.1 1.0 0.7 0.6 0.4
π - K 6.0 0.1 1.0 0.4 0.3 0.3
K - π 5.2 0.5 1.0 0.9 0.6 0.6
K - p 4.7 0.9 1.0 0.6 0.4 0.4

φφ K - π 4.4 1.4 1.0 0.9 0.7 0.7
D+

s D
−
s γ π - e 5.2 0.4 1.0 0.8 0.8 0.6

π - K 4.5 1.2 1.0 0.9 0.6 0.7
K - π 4.4 1.4 1.0 0.9 0.8 0.8
K - p 3.4 4.6 1.0 1.0 0.8 0.8

D0D̄0γ π - K 6.0 0.1 1.0 0.4 0.3 0.3
K - p • 4.7 1.0 1.0 0.7 0.4 0.5

Table 13:
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Figure 60: Projection of kinematic distributions on separation maps (1).

T
P

C
w

it
h

T
O

F
T

P
C

w
/o

T
O

F
S
T

T
w

it
h

T
O

F
S
T

T
w

/o
T

O
F



5 EVALUATION 74

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100 120 140 160 180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 mapp on p/± @ 6.49 GeV/c, Kγ

0
D0D

 = 0.8%avmisID

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100 120 140 160 180

p 
[G

eV
/c

]
0

1

2

3

4

5

6
 map± on K±π @ 7.75 GeV/c, γ0*D0D*

 = 0.3%avmisID

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100 120 140 160 180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 map± on K±π @ 8.85 GeV/c, 

-
*s0D+

sD

 = 0.5%avmisID

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100 120 140 160 180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 mapp on p/± @ 6.49 GeV/c, Kγ

0
D0D

 = 0.1%avmisID

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100 120 140 160 180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 map± on K±π @ 7.75 GeV/c, γ0*D0D*

 = 0.1%avmisID

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100 120 140 160 180

p 
[G

eV
/c

]
0

1

2

3

4

5

6
 map± on K±π @ 8.85 GeV/c, 

-
*s0D+

sD

 = 0.1%avmisID

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100 120 140 160 180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 mapp on p/± @ 6.49 GeV/c, Kγ

0
D0D

 = 0.1%avmisID

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100 120 140 160 180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 map± on K±π @ 7.75 GeV/c, γ0*D0D*

 = 0.0%avmisID

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100 120 140 160 180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 map± on K±π @ 8.85 GeV/c, 

-
*s0D+

sD

 = 0.1%avmisID

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100 120 140 160 180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 mapp on p/± @ 6.49 GeV/c, Kγ

0
D0D

 = 0.1%avmisID

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100 120 140 160 180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 map± on K±π @ 7.75 GeV/c, γ0*D0D*

 = 0.0%avmisID

0

1

2

3

4

5

6

7

8

 [deg]θ
0 20 40 60 80 100 120 140 160 180

p 
[G

eV
/c

]

0

1

2

3

4

5

6
 map± on K±π @ 8.85 GeV/c, 

-
*s0D+

sD

 = 0.0%avmisID

Figure 61: Projection of kinematic distributions on separation maps (2).
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Figure 62: Projection of kinematic distributions on separation maps (3).
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5.2 Problematic channels

As it can been seen clearly in tables 11 - 13, for a significant number of channels either the mis-
identification fraction can be considered as large or the capabilities for the particular detector
setups exhibit large differences. Since not all channels can be discussed in detail in this document
only some of them will be commented on in the following paragraphs.

5.2.1 p̄p→ Λ0Λ̄0 at 1.46 GeV/c (π/e),fig. 60

The pions of this signal reaction are distributed more or less isotropically with very low momenta.
Since neither dE/dx nor tTOF differs much between electrons and pions in this phase space region
the mis-ID frations is about 5%. The scenario is a representative for all channels with very low
energetic particles.

5.2.2 p̄p→ Ω−Ω̄+ at 4.954 GeV/c (p/K), fig. 60

Most noticable for this channel is its compact phase space distribution for protons in the region
around (p, θ) = (1.5GeV/c, 5◦). Directly in that region the corresponding separation map exhibits
some kind of ’hole’ leading to a remarkable mis-ID level around 20% which is the highest value in
the table. The origin of the hole is the requirement of ’positive identification’, i. e. both particle
species have to produce a signal in the relevant detectors. In this case the protons are below the
Cherenkov threshold in the Disc DIRC and therefore are not separable from background kaons.

This issue might either be tackled with the planned forward TOF wall to be installed behind the
dipole magnet or the usage of the Cherenkov devices in threshold mode under certain conditions.

5.2.3 p̄p→ D0D̄0γ at 6.488 GeV/c (K/p), fig. 61

This channel is a good example for scenarios where the Barrel TOF system can add valuable
information for the purpose of proton kaon separation. In particular with STT as the central
tracker the mis-ID decreases by a factor of approximatly eight. In case of the TPC option this
improvement vanishes since the dE/dx information can be expected to provide sufficiently powerful
information for good identification.

5.2.4 p̄p→ Λ+
c Λ−

c at 10.187 GeV/c (π/K), fig. 62

The pions originating form this baryonic channel cover a large part of the relevant phase space
for π/K separation. The critical region is the low momentum edge of the distributions below 400
MeV/c. Here it can be seen, that in case of the STT tracker option a Barrel TOF significantly
improves the identification power. Obviously in this particular situation the dE/dx information of
the TPC alone already provides superior identification potential than the combined information
of STT and TOF.



6 GLOBAL PID SCHEME 77

6 Global PID Scheme

The PANDA spectrometer will feature a complete set of innovative detectors for particle identifi-
cation. The detection of neutral particles will be performed by a highly granular electromagnetic
calorimeter. Charged particles will be identified in the low momentum region by their energy
deposit and ToF, in all other momentum regions by innovative DIRC detectors. The target spec-
trometer will be complemented by a forward spectrometer to detect high momentum particles and
surrounding muon detectors. Each detector systems performance is optimised in itself. Studies
have begun to combine the responses of various detectors in a common framework based on a
likelihood scheme or a carefully trained neutral network. These combined likelihood schemes are
successfully employed at various detector systems like HERMEs, Belle and BaBar. They rely on
a reliable parametrisation of the detector component response from simulation and test-beams.
This has to be taken into account in testing PANDA’s individual components. The combined
performance of the system will be significantly better than the individual separation powers.
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7 Conclusion

In this report of the Technical Assessment Group PID to the P̄ANDA collaboration all informations
to the planned PID sub detectors are collected as well as a method is introduced to define and
evaluate the performance of detector parts and a complete detection system. Dimensions of
detectors as well as their performance obtained with simulations of different level of detail are
shown.

The Fast Simulation were introduced and the parameterization of the different PID processes and
all known specific detector effects being the input for this simulation packet. Please note: The
muon system was not included in the evaluation with the Fast Simulation as well as the complete
performance of the electromagnetic calorimeter depending on many different parameters. The
Forward ToF detector discussed in the text is also absent in the calculations and the RICH
detector parameterization is only a rough approach.

With this tool the separation power, defined in the text, could be determined for each combination
of two different particle species. The separation power was calculated for a fine binning of the
solid angle θ covered (by each sub detector) and the momentum p of the produced particles. The
number of sigma separation in each bin is indicated by a color code.

Please note: Only positive particle identification is shown. This means, in case one of the two
particles did not overcome the threshold for Cherenkov radiation the separation power is zero.
Thus, if one uses the Cherenkov detectors as threshold counters, additional information is available.

The combination of the full detector results in a map of separation power over θ and p. In regions
(bins) covered by more than one detector the global separation power was calculated as the
quadratic sum of the separation power of the contributing detectors. Due to its higher sensitivity
to small differences the separation power has been translated into the so called mis-identification
level for the process of evaluation and comparison.

The connection to the envisaged physics is achieved by comparing phase space plots over θ and p
with the map of separation power, whereas the only interesting regions are that where the signal
overlaps with the background particles.

In this report for all P̄ANDA relevant physics channels and its relevant background channels phase
space plots were produced and the overlap regions were determined.

Only for these regions the average fraction of mis-identification was determined. For all four
scenarios (STT, STT+ToF, TPC and TPC+ToF) of detector setups a factor relative to the above
value has been computed. These numbers allow to see and judge the performance of the four
options.

Thus the results of the evaluation could be shown by a table which contains the reaction channels
excessing a level of mis-identification defined in the report. Only critical reactions were represented
by plots, some were discussed in more detail.

Is has to be noted again: The report is based on a Fast Simulation. This means that for the
results no microscopic simulation was done. The PID processes were parameterized and some
estimations were done for simplification or since no better knowledge was available.

This document provided by the PID TAG of P̄ANDA should serve as a tool to evaluate the
detector setup for an optimal global PID performance. On the one hand side the numbers arrived
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for the separation power of different setups and reactions give the possibility to compare the
value of alternative sub detectors or additional detector parts. On the other hand and maybe
more important, the methods explained here can be used for further studies and specific questions
having particular reactions as well as more detailed and evolved detector setups.

The PID TAG gives no recommendations but numbers and a clue how to read them. They are
strong and serve as a basis for decisions to be taken by the PANDA collaboration.

To address the questions raised in the beginning of the report, one can compare the values for
the mis-identification achieved with certain setups for a certain important channel or compare an
average mis-identification for all reaction channels.

Central Tracker: It is obvious from the evaluation tables that the values for mis-identification
differ for the setup with a TPC and the one with the STT up to a factor of 10. But this
holds only for reactions where the mis-identification is already less than 1%. Thus for a
final decision concerning the choice of the central tracker with respect to its contribution
to particle identification combined with its tracking accuracy a full simulation is highly
recommended.

Barrel Time of Flight Detector: In some cases the Barrel Time of Flight detector can add
beneficial information to the STT. In addition the role of a Barrel Time of Flight in the
P̄ANDA timing without a start detector might be important. But as indicated there are
more facts to be considered to judge for a subdetector to be installed than this report can
cover for the time being. Furthermore a device like the Time of Flight detector installed in
the inner target spectrometer would introduce further radiation length far in front of the
Electromagnetic Calorimeter which has to be investigated with a full simulation.

RICH Detector: The necessity of the RICH detector and the Forward ToF could only be finally
proven after a microscopic simulation of all channels going in the forward direction. Some of
the important reactions might be already analyzable without the information of these two
detectors. But it has to be said that in the investigated reactions quite a big fraction of reac-
tion products goes into the angular and complementary momentum region of a combination
of a Forward RICH and a Forward Time of Flight Detector.

Endcap Cherenkov: The need of an Endcap Cherenkov detector in the P̄ANDA Target Spec-
trometer had been shown by the calculations described in this document. For a distinction
between the performance of the Focussing Light guide Disc DIRC and the Time of Prop-
agation Disc DIRC results from beam times and comparative microscopic simulations are
mandatory.

What the report could show with the usage of the Fast Simulation is the good coverage of the
reactions envisaged by the different P̄ANDA detector setups. The lack of information in the
particle identification for reactions described in the report might be filled with additional detectors
that has to be proposed and designed.

A future report of the P̄ANDA PID TAG based on a full simulation and - from equal importance
- on detector tests can cover and answer the complete set of questions needed for the optimized
setup of the P̄ANDA detector and a unique and successful physics program.
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Lars Schmitt (Physics)


	Introduction
	Physics Requirements
	PID Subsystems
	Micro Vertex Detector (MVD)
	Central Tracker
	Time Projection Chamber (TPC)
	Straw Tube Tracker (STT)

	Barrel ToF
	Barrel RPC TOF 
	TOF scintillator barrel

	Barrel DIRC
	Electromagnetic Calorimetry in the Target Spectrometer
	PID Performance
	Electron Identification
	Afterpulse K+ Identification

	Endcap Cherenkov
	Focussing Disc DIRC
	Time of Propagation Disc DIRC
	Proximity RICH

	Muon Counter
	Muon system overview

	Forward RICH
	Forward ToF
	Forward Calorimeter
	Electromagnetic calorimeter
	Hadron calorimeter


	Tools
	Separation Power
	Parameterization of the Electromagnetic Calorimeter
	Mapping Separation Power

	Phase Space Plots
	Fast Simulation
	General Technique
	Tracking Detectors
	Energy Loss Parameterization
	Cherenkov Angle Parameterization
	Time Of Flight Parameterization
	Parameter Settings


	Evaluation
	Maps of Separation
	Problematic channels
	"7016pp 0"70160 at 1.46 GeV/c (/e),fig. 60 
	"7016pp -"7016+ at 4.954 GeV/c (p/K), fig. 60
	"7016pp D0"7016D0 at 6.488 GeV/c (K/p), fig. 61
	"7016pp c+c- at 10.187 GeV/c (/K), fig. 62


	Global PID Scheme
	Conclusion
	Acknowledgments
	Appendix

