Separation power – again...

slide shown at GSI PID-TAG

- key formulae from overview talks at the two past RICH conferences
- definition as worded in BaBar paper

looking ahead

Klaus Föhl 2007-10-05 VRVS PID-TAG meeting

Definition of σ_{RES}

$$N_{\sigma} = \frac{|p_1 - p_2|}{\sigma_{RES}}$$

what do we do if distribution widths are not the same?

$$\sigma_{RES} := (\sigma_1 + \sigma_2)/2$$

TAG definiton agreed at GSI

consistent with formula in B. Seitz talk

$$N_{\sigma} \approx \frac{|m_1^2 - m_2^2|}{2p^2\sigma(\vartheta_C)\sqrt{n^2 - 1}}$$

(Particle Data Book)

N.B.
$$\beta = \frac{p}{\sqrt{p^2 + m^2}} \approx 1 - 1/2 \frac{m^2}{p^2}$$

$$\sigma_{RES} := \sqrt{\sigma_1^2 + \sigma_2^2} \qquad \sigma_{RES} := \sigma_1 + \sigma_2$$

came up in Erlangen

error value for (p_1+p_2) or for (p_1-p_2) , but we measure one single value pi

p₁ and p₂ define the scale

|p₁-p₂| determined accurately (high statistics or by calculations)

same information content as formula on the left

> Klaus Föhl PANDA PID-TAG GSI 2007-09-20

Ypsilantis and Seguinot

Nuclear Instruments and Methods in Physics Research A 343 (1994) 30-51

North-Holland

Theory of ring imaging Cherenkov counters

T. Ypsilantis *, J. Seguinot College de France, Paris, France

2.1. Resolution and particle identification

The resolution of a RICH detector for a single photoelectron is given by Eq. (7). For N photoelectrons it becomes

$$\frac{\sigma_{\beta}}{\beta} = \tan \theta \frac{\sigma_{\theta}}{\sqrt{N}} \,, \tag{9}$$

where σ_{θ} is the total angular error per detected photon. This differs from Eq. (8) because a RICH counter measures θ directly whereas in threshold counters it is

The particle identification capability of a RICH counter may be obtained by considering the variable $u = \sin^2 \theta$ which, from Eq. (1), may be written as

$$u = 1 - (1/n)^2 - (m/pn)^2$$
, (10)

where p and m are the particle momentum and mass. The number of standard deviations n_n to discriminate mass m_2 from m_1 is then obtained from Eq. (10) as

$$n_{\sigma} = \frac{u_2 - u_1}{\left(\sigma_u / \sqrt{N}\right)} = \frac{m_2^2 - m_1^2}{p^2 n^2} \left(\frac{\sqrt{N}}{\sigma_u}\right),$$
 (11)

where σ_u is the error in u per single photoelectron and σ_{v}/\sqrt{N} is the error for N photoelectrons. By combining Eqs. (4) and (9) and noting that σ_{μ} = $(2 \sin \theta \cos \theta)\sigma_{\theta} = (2 \sin \theta/n\beta)\sigma_{\theta}$, particle ID with n_{α} standard deviations may be attained at momentum

$$p = \sqrt{\frac{m_2^2 - m_1^2}{2k_{\rm r}n_{\sigma}}} \,, \tag{12}$$

where the quantity k_r is the RICH detector constant, defined as

$$k_{\rm r} = \frac{n\beta\sigma_{\theta}}{\sqrt{N_0 L}} = \frac{\tan\,\theta\sigma_{\theta}}{\sqrt{N}} \tag{13}$$

and σ_{θ} is the total angular error per detected photon.

Glässel at RICH 2004

Nuclear Instruments and Methods in Physics Research A 433 (1999) 17-23

For $\beta \to 1$ the Cherenkov angle approaches the asymptotic value θ_{max} related to threshold as

$$\sin^2 \theta_{\text{max}} = \frac{1}{\gamma_{\text{t}}^2} = \frac{1}{\eta_{\text{t}}^2 + 1} \tag{5}$$

Here the quantity $\eta = \beta \gamma$ has been introduced, trivially related to the Lorentz factor as $\eta^2 = \gamma^2 - 1$. It directly relates to particle momentum $(p = \beta \gamma m)$.

9. Angular resolution and particle identification

Particle identification with the RICH is based on distinguishing the Cherenkov angle for particles with known momentum. If one considers the quantity $\sin^2 \theta_c$, its difference for two masses m_1 and m_2 at momentum p is

$$\Delta \sin^2 \theta_c = \frac{m_2^2 - m_1^2}{n^2 p^2} = \frac{\Delta m^2}{n^2 p^2}.$$
 (17)

The quality of the separation is described by the number of standard deviations in this quantity, it can be calculated to be

$$n_{\sigma} = \frac{\beta^2 \Delta m^2}{2p^2} \bigg/ \frac{\sigma_{\beta}}{\beta} = \frac{\beta^2 \Delta m^2}{2p^2 \tan \theta_{\rm c} \sigma_{\theta_{\rm c}}}$$
(18)

leading to an upper momentum limit for n_{σ} state dard deviation separation of

$$p_{\text{max}} = \left(\frac{\beta^2 \Delta m^2 \eta_t}{2n_\sigma \sigma_{\theta_o}}\right)^{1/2}.$$

SLAC-PUB-11017 in BaBar review

SLAC-PUB-11017 January 2005

Performance of the BABAR-DIRC*

Jochen Schwiening

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Representing the BABAR-DIRC Collaboration ‡

top of page 10

The pion-kaon separation power is defined as the difference of the mean Cherenkov angles for pions and kaons assuming a Gaussian-like distribution, divided by the measured track Cherenkov angle resolution. As shown in Figure 6, the separation between kaons and pions is about 4 σ at 3 GeV/c declining to about 2.5 σ at 4.2 GeV/c.

Looking ahead

- reasonable collection of candidate detectors
- ideas on inividual and combined detector performances

 need to formulate: physics implications of particular detector decisions...