Calculations for a combined PID and tracking detector based on C6F14, CsI and GEMs (Proposal: Lars Schmitt)

Klaus Föhl PID-TAG 1/3/2007 presentation expanded write-up 2/3/2007

source of material properties

material transmission

photon yield – visible photons

starting at E_photon=5.4eV

simulation ingredients

- proper Cherenkov photons number and colour
- refractive index dispersion
 - Cherenkov angles
 - Snell's law
- absorption length
- quantum efficiency
- statistical analysis

Simplifications & Approximations

- normal incidence particles only
 → maths simplification
- no angular straggling
- liquid without vessel
- no detector pixels (assumed to be small)
- Fresnel formula simplified (Brewster angle being close)
- perfect mirror

hit pattern

The particle distance is the average of the photon radial distances resulting from one charged particle. Particle distance mean and sigma are computed for samples of 1000 events β =1 and 1000 events β =0.99 and sigma separation & 4 σ -limit derived.

performance - radiator width

angle dependence

preliminary and approximate calculation

potential edge effects

