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The task

PANDA is a fixed target experiment with a maximum
energy of Vs = 5.5 GeV/c2

It aims, e.g. precision measurements of charmed mesons
This defines the benchmark channels

T/K/p separation is mandatory to achieve physics aims
end-cap region has to cover 5(10) < O < 25 deg

momentum regions to be defined by physics programme
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o DIRC

light transport by
internal reflection

needs high quality
surfaces

optical elements to
enhance image

read-out outwith
detector volume

2D or (I1+1)D
reconstruction

Cherenkov schemes

® Proximity Imaging

® No complicated
optics

® resolution depends
on the ratio of
radiator thickness and
detection plane

® read-out usually in
the radiation field

® 2D reconstruction

® T[hreshold Cherenkov



Possible locations

) default position:
z = |1980mm in between

the cryostat and the
end-cap EMC

- ® |ength allowed by TB
meeting in Feb ‘07:
98mm incl. housing

® alternative position:
z = 1800 - 1950mm
inside the cryostat

® allows for more
compact magnet design
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Cherenkov options

® Focussing disc DIRC option (Edinburgh/Glasgow design)
e Time-of-Propagation disc DIRC (Giessen design)
= ~ ® Proximity imaging RICH counters
® liquid radiator (ALICE HMPID)
® solid radiator (CLEO RICH)
® Aerogel (Belle upgrade)
® Staggered Aerogel Threshold counter (KEDR-ASIPH)

Note: all examples need (significant) modifications



' Focussing disc DIRC

“mm fused silica radiator

® imagining by focussing light
“guides on focal plane equipped
- with multi-pixel PMTs

® Cherenkov angle from two
spatial co-ordinates, timing for

event correlation
g (2D + t)

® optical dispersion correction

® possible at new location, but
slight decrease in performance
and mechanically more
challenging




‘ime Of Propagation DIRC

Cherenkov angle P PuIT
o 3 with filter green dichroic filter
rec O n Stru Ctl O n by O n e S Patl al (not drawn to scale)/ (reflec'fing I?Iu?,transmitting green light)
blue dichroic filter
\ / (reflecting green, transmitting blue light)

co-ordinate and ToP

measurement (l+1)D /V

dispersion correction by
wavelength dependent

photon detection (dichroic efecton
mirrors)

less read-out channels
compared to focussing disc ama formard pecrometer

needs time resolution < 70 ps

design for default and new
position




ﬁ' ime Of Propagation DIRC

Cherenkov angle

} reconstruction by one spatial
' co-ordinate and ToP
measurement (1+1)D
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® dispersion correction by
wavelength dependent
photon detection (dichroic
mirrors)

® |ess read-out channels
compared to focussing disc

® needs time resolution < 70 ps

-150 =100 50 . 150
phi—angle[°]

® design for default and new
position
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fiquid Radiator Proximity RICH

E

Example: ALICE HMPID
}0 Liquid radiator (CeF4)

® |ow dispersion

charged particle

® UV transparent stand-off
volume (needs UV

. ; collection

transparent gas in vessel) ooum . electrode

® Csl photo-cathode (UV light)

® needs purification

® Photon detection by Csl wac
coated GEM (new o  \ Front-ond
: ront-en
development for PAN DA) i electronics

® combine tracker and PID

Note: angles not to scale



Example: ALICE HMPID
Liquid radiator (CesFi4)
low dispersion

UV transparent stand-off
volume (needs UV
transparent gas in vessel)

Csl photo-cathode (UV light)
needs purification

Photon detection by Csl
coated GEM (new
development for PANDA)

combine tracker and PID

o,
~
?
o
M
i
£
E
-
e
=
[
E
2
E

iquid Radiator Proximity RICH

—K separation

Tg [mrad)



“lliquid Radiator Proximity RICH

Example: ALICE HMPID
}0 Liquid radiator (CeF4)

® |ow dispersion

—K separation

® UV transparent stand-off
volume (needs UV
transparent gas in vessel)

® Csl photo-cathode (UV light)
® needs purification

® Photon detection by Csl
coated GEM (new :
development for PANDA) 0s (mrad)

® combine tracker and PID

o,
~
?
o
M
i
£
E
-
e
=
[
E
2
E




“lliquid Radiator Proximity RICH

Example: ALICE HMPID
}0 Liquid radiator (CeF4)

® |ow dispersion

—K separation

® UV transparent stand-off
volume (needs UV
transparent gas in vessel)

® Csl photo-cathode (UV light)
® needs purification

® Photon detection by Csl
coated GEM (new :
development for PANDA) 0s (mrad)

® combine tracker and PID

limit {GeV¥/c)
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“Hliquid Radiator Proximity RICH

Example: ALICE HMPID
I I : >hotons n(A) radiator+expansion d=15+135mm
L|C|U|C| radlator (C6FI4) ohotons n(A) radiator+expansion d=1o+150mm

low dispersion

o o O

UV transparent stand-off
volume (needs UV
transparent gas in vessel)

® Csl photo-cathode (UV light)

® needs purification

® Photon detection by Csl

coated GEM (new
development for PANDA) ~1000 -500 0 500 1000 150C

® combine tracker and PID



ﬂ)lld Radiator Proximity RICH

® Example: CLEO-c RICH
(uses LiF with Csl read-
out)

® saw-tooth shaped fused
silica radiator

® no need for purifier

® performance limited by
dispersion (slightly
worse than LRPI)

® photon detection by Cisl
coated GEMs

® combine tracker and PID



ﬂ)lld Radiator Proximity RICH

| ® Example: CLEO-c RICH
| } (uses LiF with Csl read-
out)

plane sawtooth plane

® saw-tooth shaped fused
silica radiator

® no need for purifier

® performance limited by
dispersion (slightly
worse than LRPI)
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® photon detection by Csl : :
coated GEMs 76543211234567

® combine tracker and PID



g?ogel proximity RICH (AeroP)

~ ® focussing radiator RICI
' design tested for Belle
" endcap upgrade

® FARICH study uses 6
different indices

® Photon detection using o

Pl 5495.

0.2965

MCP-PMT or proximity ’ /

796.0

focussing HAPD

® working in the visible

range
ST
® Only limited space point ) ;
resolution by measuring Z S N

Cherenkov light produced




g?ogel proximity RICH (AeroP)

~ ® focussing radiator RICI
' design tested for Belle
" endcap upgrade

® FARICH study uses 6
different indices

® Photon detection using
MCP-PMT or proximity
focussing HAPD

® working in the visible
range

® Only limited space point
resolution by measuring
Cherenkov light produced




® Example KEDR ASIPH

Use two Aerogel
refractive indices for yes/
nho answer on TTI/K

Npe will add to
resolution

might use large area
APD for photon
detection

relies on interplay of
WLS and PMT

er of the KEDR detector.
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Fig. 5. The amplitude spectra for kaons (a) and pions (b), p =
0. 86 G V/

A.Y.Barnyakov et al. NIM A 494 (2002) 424



Some thought on costs

DIRC costs equally given by fused silica prices and read-
out

reliable estimates for PMTs and fused silica

Several groups actively working and investing in R&D for
DIRC counters

read-out electronics is the biggest uncertainty

costs for proximity imaging driven by number of read-out
channels (might be shared with cost for tracker)

Development cost for large area Cs| GEM ?



timising Cherenkov counters

Performance depends on N — N0L22 g2 .

® number of photons Ng = %/Q(E)T(E)R(E)dE

-~ e figure of merit

2 2 2
i A, 5 (o S > (0)
® Cherenkov angle resolution 0y, = \/ msc |\Thr PI
® Use parametrisations for No
s chr On o OrMS
O-Hi O-Qi =

V6

— -
® Use weight function for fn< sin 0.
chromatic error N L <in 6 cos

Og —
® include multiple scattering and V12D
image resolution BAmM?2
pmax ~
2n009
from NIM A 433 (1999) 17 and NIM A 521 (2004) 367



| Input far Figure of Merit-caleulation i

e
L

CR ] =

2

0.8
a7
0.6
05
04
0.3
0.2
0.1

!IlliiI|I?~I|I=r||IJ1I|I1=I|II:I|IIrI|II=I|IIE

i

| Weights for merit function |

A
08F

07

waight {arb. units)

08 ;
05
04
n.:a?

0.2

Example: Aerogel

radiator and Burle
Planacon MCP-PM
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Example: Csl cathode
with C¢F |4 radiator and
fused silica window



erformance comparison

FDD ToP LRPI SRPI AeroP | AeroTl
<[00 mm [ <100 mm | ~180mm | ~I80mm | ~250mm | ~180mm
TDC TDC |TDC/ADC|TDC/ADC| TDC |TDC/ADC
~4500 960 >35000 | >35000 [ 35000 | ~1000
PMT PMT | GsIGEM | CsIGEM| PMT PMT
spec | UV/VIS | UV/VIS | VUV VUV VIS VIS
‘tracking no yes/no yes yes no (?) no
trigger |need track|need track|need track [need track|need track| simple
pattern | 2D+t | (I+1)D | 2D+t | 2D+t | 2D+t | ID +t
running | simple | simple |purifier/gas| gas |dry N2?|dry N2?
R&D risc|data rate| rate/ At |Csl GEM|Csl GEM| HAPD | WLS




ToP LRPI SRPI | AeroP | AeroT
0.17 0.20 0.24 0.14 0.03
- 60 57 76 !
/0 36 68 |18 |10
0.6 (0.2)|0.6 (0.2)| 0.84 0.56 2.75 !
6.5 6 3.3 2.8 7.5 !
o) 0.45 - 4. 3.9 N -
At O(ns) | <70 ps |O(10 ns)|O(10 ns)| O(ns) | O(ns)
acceptance| full edge edge edge edge full
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~ Decision criteria

ysics performance:

Do pmin and pmax match physics aims ?
Are there significant limitation for future discoveries ? What physics compromises does
the choice imply !

What limitation does a PID choice imply for other detector components (tracking,
forward EMC) ! How about acceptance gaps ? Homogenous response ?

® Technological criteria:

® Can the detector design be accommodated mechanically ?

® (Can the DAQ handle the data rate ?

® Are we confident to master the R & D risks (give manpower and time constraints) !

® FEase of operation and maintenance, handling of substances involved ?

® Hardware trigger possible ? Resolution of multiple hits ? Background suppression ?
® Other criteria:

® What know-how is available in the groups involved ? What within PANDA ?

® Do we find the money for a particular solution ? How about overall cost ? Are we willing
to trade investment for running cost ! Can costs be shared with tracker ?

® What are the timelines for a decision ?



