

Focussing Disc DIRC Detector for PANDA

STFC Visiting Panel

Royal Institute of British Architects London, 15/04/2008

PANDA Physics Requirements

- Expected decays of glueballs and charmed mesons produce π/K with momenta > 6 GeV for θ <25°
- Need particle ID for reconstruction and PWA

The PANDA Experiment

- PANDA is an anti-proton annihilation experiment at √s=5.5 GeV/c
- Full angular coverage and very good PID mandatory
- Detector has to stand 20 MHz interaction rates
 - radiation hard (>100krad)
 - high count rates (~1.5 MHz)
 - excellent time resolution (<300 ps)
- Detector has to work in magnetic field up to 1.4 T
- small radiation length

Note: only target spectrometer shown

Focussing Disc DIRC

- Detection of Internally Reflected Cherenkov light
- 5° < θ < 25° angular acceptance
- Momentum range: 1 6 GeV/c
- Positive identification of $\pi/K/p$
- Compact detector: fused silica disc of 20 mm thickness and 1100 mm radius
- 128 focussing light guides
- readout by multipixel MCP PMT
- Dispersion correction by LiF

Particle Rates

- Multiplicity estimated with FastSimulation based on DPM model
- Average multiplicity at full PANDA beam momentum ~2 charged particles/event arriving in < 1ns
- Pile-up probability <10% for 1ns gate</p>
- resolved by fit in time and space

Photon Generation and Transport

Focussing DIRC Design

- Detection of Internally Reflected Cherenkov light allows to build thin radiators
- Focussing disc DIRC:20 mm radiator thickness,radius < 1100 mm
- Disc to be constructed from 4 + 2 pieces
- Surface roughness < 20 nm</p>
- focussing elements ensure good imaging and compact detection plane (50x50mm²)

Note: drawing no to scale

Focussing DIRC Design

- Detection of Internally Reflected Cherenkov light allows to build thin radiators
- Focussing disc DIRC:20 mm radiator thickness,radius < 1100 mm
- Disc to be constructed from 4 + 2 pieces
- Surface roughness < 20 nm</p>
- focussing elements ensure good imaging and compact detection plane (50x50mm²)

Note: drawing no to scale

Disc cutting details

Surface requirements

- Surface quality of industrial fused silica (unpolished) leads to very high losses at each reflection
- Polished surfaces guarantee high light output
- Examples from PANDA polishing tests (INFN Ferrara)

Radiator tests

- High optical quality is mandatory for solid radiators
- Radiator surfacepolishing is crucial
- Employ different test methods
- Precision on single measurement < 0.1%</p>
- Reproducibility < 0.5%</p>

Radiator tests

- High optical quality is mandatory for solid radiators
- Radiator surfacepolishing is crucial
- Employ different test methods
- Precision on single measurement < 0.1%</p>
- Reproducibility < 0.5%</p>

Radiation hardness tests

- Evaluation by CARY 300 photo spectrometer
- Sensitivity better than 1%
- Samples measured before and after irradiation
- Method tested using normal glass susceptible to radiation damage
- Radiation band observed in LiF, no radiation damage seen in all three fused silica samples

Cherenkov Image Reconstruction

Expected Detector Performance

- Cherenkov images will be pattern in θ/φ space
- θ will be measured by PMT
- φ is given by the light guide width
- Pattern are widely spread in φ
- Performance increases with stand-off distance

Image Reconstrucion

- Define road in 2D+t space for pi/K/p hypothesis based on tracking information
- Timing information resolves ambiguities
- Studies show possible mass reconstruction and resolution

Image Reconstrucion

- Define road in 2D+t space for pi/K/p hypothesis based on tracking information
- Timing information resolves ambiguities
- Studies show possible mass reconstruction and resolution

Sensitivity to Noise

- Reconstruction was studied for 3 noise scenarios
 - no noise
 - > S/N = 1/1
 - = S/N = 1/6
- Fitted mass resolutions agree within errors

Sensitivity to Noise

- Reconstruction was studied for 3 noise scenarios
 - no noise
 - = S/N = 1/1
 - = S/N = 1/6
- Fitted mass resolutions agree within errors

Focussing Optics

- Lightguide design optimised for 50x50mm2 focal plane matching available MCP-PMTs
- Some freedom in orientation of focal plane to optimise performance in magnetic field
- Performance study for 1.5 mm strip pitch and and 3 mm strip pitch
- Include LiF for dispersion correction

Focussing Optics

- Lightguide design optimised for 50x50mm2 focal plane matching available MCP-PMTs
- Some freedom in orientation of focal plane to optimise performance in magnetic field
- Performance study for 1.5 mm strip pitch and and 3 mm strip pitch
- Include LiF for dispersion correction

Light guide width

- Studies performed to optimise the width of lightguide
- This is equivalent to resolution in Φ
- studied 128 LG, 64 LG and 256 LG with same pixel size in θ (1.5 mm)
- 128 LG is a compromise between performance and read-out cost

Light guide width

- Studies performed to optimise the width of lightguide
- This is equivalent to resolution in Φ
- studied 128 LG, 64 LG and 256 LG with same pixel size in θ (1.5 mm)
- 128 LG is a compromise between performance and read-out cost

Light guide width

- Studies performed to optimise the width of lightguide
- This is equivalent to resolution in Φ
- studied 128 LG, 64 LG and 256 LG with same pixel size in θ (1.5 mm)
- 128 LG is a compromise between performance and read-out cost

Dispersion correction

- Performance of solid radiators hampered by dispersive effects
- Inserting a material with higher refractive index and different dispersion curve minimises blurring
- Can be incorporated into a focussing design
- We study: fused silica and LiF for dispersion correction

Dispersion correction

- Performance of solid radiators hampered by dispersive effects
- Inserting a material with higher refractive index and different dispersion curve minimises blurring
- Can be incorporated into a focussing design
- We study: fused silica and LiF for dispersion correction

Dispersion correction

- Performance of solid radiators hampered by dispersive effects
- Inserting a material with higher refractive index and different dispersion curve minimises blurring
- Can be incorporated into a focussing design
- We study: fused silica and LiF for dispersion correction

Dispersion Correction

- Transition from fused silica to LiF and back has two-fold prism effect
- Angular spread is diminished
- Centre moves, has to be taken into account in imaging optics and reconstruction

Photon Detection System

Multi-Pixel MCP-PMT

- Need multi-pixel PMT for position reconstruction and high geometrical filling factor
- Photon detector has to work in magnetic fields of < 1.4 T</p>
- Excellent time resolution an advantage
- ► For tests: 8 x 8 channel 51 x 51 mm² active area 5.9 x 5.9 mm² pixels
- Test Burle 85011 with 25 um and Burle prototype 10 um pore diameter

Work in collaboration with A Lehmann, University of Erlangen, cf. RICH 2007

PMT Tests

Response in Magnetic Field

Response in Magnetic Field

MCP-PMT lifetime

- MCP-PMTs have a reputation for bad lifetime due to ion-feedback affecting the the photo-cathode
- Novosibirsk suggest thin Al₂O₃ foil to protect cathode, also tested by Hamamatsu
- Photonis Burle suggest different production mechanism for MCP
- Estimate without HV adjustment, but after improvement

$$\tau = \frac{Q \times N_{PMT}}{e \times N_p \times N_\gamma \times N_i \times G}$$

MCP-PMT lifetime

- MCP-PMTs have a reputation for bad lifetime due to ion-feedback affecting the the photo-cathode
- Novosibirsk suggest thin Al₂O₃ foil to protect cathode, also tested by Hamamatsu
- Photonis Burle suggest different production mechanism for MCP
- Estimate without HV adjustment, but after improvement

$$\tau = \frac{300\text{C} \times 128}{\text{e} \times 3 \times 80 \times 2 \cdot 10^7 \text{s}^{-1} \times 5 \cdot 10^5} \approx 3\text{y}$$

Electronics

- 4096 read out channels (128 PMTs with 32 channels each)
- need to preserve MCP-PMTs good timing properties
 (Δt ~ 120 ps)
- Average rage ~ 1.46 MHz/chn
- Self-triggering, deliver precise time stamp
- No ASIC foreseen, analogue preamp and discriminator favoured
- Properties mimic successfully tested commercial electronics

Collaboration with STFC Daresbury

Next Steps

Continue PMT testing

- Single anode multi-pixel PMTs are prone to optical and electrical cross talk
- Move small light source across surface and measure signal in adjacent pixels
- Test lifetime with updated MCP PMTs Q4/2008

Continue PMT testing

- Single anode multi-pixel PMTs are prone to optical and electrical cross talk
- Move small light source across surface and measure signal in adjacent pixels
- Test lifetime with updated MCP PMTs Q4/2008

Planned Test Set-Ups

- Sequential testing of components (radiator, LiF, focussing, PMTs)
- Started with radiator and PMTs using cosmics
- Components available, working on multichannel readout
- 2 500x70x20mm³
 radiators ordered

Raditor-LiF-MCP setup for e⁻/p-beam in Q3/4 2008

Design Summary

- Compact design matching PANDA geometrical constraints
- Disc of 1100 mm radius and 20 mm thickness
- 128 light guides with 32 channels each (4096 chn. in total)
- Strip pitch 1.5 mm in accordance with image quality
- total detector mass ~750kg mass, mounted on F-ECAL
- Fused silica tested to be radiation hard
- Surface roughness < 0.6nm achieved and tested
- Time resolution of MCP PMT ~ 50 ps, expect ~120ps including TDC
- MCP-PMTs shown to work up to 1.5 T
- MCP-PMTs need lifetime improvement

Alternative Solutions

Performance comparison

	Focussing Disc	Liquid Radiator	Solid Radiator	Aerogel
	DIRC	Proximity	Proximity	Proximity
		Imaging	Imaging	Imaging
X_0	0.17	0.2	0.24	0.14
N ₀ (1/cm)	124	60	57	76
N _{pe}	135	36	68	18
p _{min} (GeV/c)	0.6 (0.2)	0.84	0.56	2.75
p _{max} (GeV/c)	6.5	3.3	2.8	7.5
σ_{θ}	0.45	4.1	3.9	2.7
Δt	< 500 ps	O(10 ns)	O(10 ns)	O(ns)
Overall length	< 100 mm	~180 mm	~180 mm	~ 250 mm
Read out	TDC	TDC/ADC	TDC/ADC	TDC
N _{ch}	4096	> 35000	> 35000	35000
Photon detection	MCP PMT	Csl GEM	CsI GEM	PMT
spectral range	UV/VIS	VUV	VUV	VIS
pattern	2D + t	2D + t	2D + t	2D + t