I. TABLE OF REACTIONS AND THRESHOLDS FOR PANDA PHASE-C (PROTON-PROTON SCATTERING)

Definition of <u>Threshold kinematics</u>: the final particles are produced at rest. This means that the reaction knows only one direction, the beam momentum, and the final distributions are isotropic. In other words, the *S*-state is selected, among the possible initial pp states. The threshold region, where the *S* state dominates, can be more or less broad, depending on the reaction.

Let us consider the pp reaction producing two or more particles in final state:

$$p(p_1) + p(p_2) \to a(k_a) + b(k_b) + \dots$$
 (1)

where the four-momenta are indicated in parentheses. The total energy squared, s, is conserved and it is a kinematical invariant

$$s = (p_1 + p_2)^2 = (k_a + k_b + ..)^2.$$
(2)

Calculated in Lab system and entrance channel we find:

$$s = (p_1 + p_2)^2 = 2M_p^2 + 2E_L M_p,$$
(3)

where E_L is the beam energy in Lab system, M_p is the proton mass. In cms systems and in final channel is:

$$S = (\tilde{k}_a + \tilde{k}_2)^2 + ... = (\tilde{E}_a + \tilde{E}_b + ...)^2 - (\tilde{k}_a + \tilde{k}_2 + ...)^2,$$
(4)

that becomes at threshold:

$$s_{Thr} = = (M_a + M_b + ...)^2, (5)$$

where E_i and M_i , i = a, b.. are the Lab energies and the masses of the final particles. The corresponding Lab beam energy at threshold, E_{Thr} , can be calculated from the equality of Eqs. (3) and (5):

$$2M_p^2 + 2E_{Thr}M_p = (M_a + M_b + ..)^2; (6)$$

Threfore, the total beam energy at threshold is:

$$E_{Thr} = \frac{(M_a + M_b + ..)^2 - 2M_p^2}{2M_p}.$$
(7)

and the kinetic beam energy at threshold is:

$$E_{Thr}^{kin} = E_{Thr} - M_p = \frac{(M_a + M_b + ..)^2 - (2M_p)^2}{2M_p}.$$
(8)

The corresponding beam momentum is:

$$P_{Thr} = \sqrt{E_{Thr}^2 - M_p^2}.$$
(9)

The list of some reactions accessible with PANDA and a proton beam is given in Table I, focussing on three particles production in the final state.

Reaction	E_{Th}	\sqrt{s}	P_{Thr}
	(GeV)	(GeV)	${\rm GeV/c}$
$p + p \rightarrow p + p + J/\Psi$	12.2428	4.97341	3.37082
$p+p \rightarrow p + \Sigma_C^+ + D^0$	13.7853	5.25637	3.59235
$p+p \rightarrow p + \Sigma_C^{++} + D^-$	13.8077	5.26037	3.59547
$p + p \rightarrow p + \Lambda_C^+ + D^0$	12.8554	5.08767	3.4605
$p+p \rightarrow p+p+\pi^0$	1.21793	2.01152	0.581016
$p + p \rightarrow p + p + a_0$	2.11326	2.39298	1.11036
$p + p \rightarrow p + p + f_0$	3.44056	2.86654	1.60006
$p+p \rightarrow p+p+\omega$	2.82999	2.65919	1.39629
$p+p \rightarrow p+p+\rho$	2.80973	2.65203	1.38902
$p+p \rightarrow p+p+\phi$	3.53101	2.89600	1.62808
$p+p \rightarrow p+p+\eta$	2.19395	2.42441	1.14612
$p+p \rightarrow p+p+\eta'$	3.34268	2.83432	1.56918
$p+p \rightarrow p+K^++\Lambda$	2.52044	2.54763	1.28066
$p+p \rightarrow p+K^++\Sigma^0$	2.73255	2.62459	1.36096
$p + p \rightarrow p + p + \pi^+ + \pi^-$	1.5266	2.15068	0.803894
$p + n \to d * (2360) + \pi^0 + \pi^0$	2.74757	2.62995	1.36646

TABLE I: Summary of reactions and threshold kinematics: E_{Thr} (P_{Thr}) is the total energy (momentum) of the proton beam in Lab system from Eqs. (??), (??): , \sqrt{s} corresponds to the total CMS energy.