

Discussion on the simulation $\overline{pp} \rightarrow D_{s0}^{*}(2317)^{+}D_{s}^{-}$

In preparation of the analysis note v3 - E. Prencipe

October 22th, 2015 | Elisabetta Prencipe, Forschungszentrum Jülich | Open-Charm meeting

- Analysis strategy
- Background characterization

- to work on $D_{s1}(2460)$ and $D_{s}(2536)$
- check the analysis strategy on $D_{s0}^{*}(2317)$, for consistency

- progress in tracking
- progress with PID tools
- progress with analysis tools

This is the first full simulation performed with pandaroot on $D_{s0}^{*}(2317)$

MC simulation – EvtGen model

noPhotos

Decay pbarpSystem D_s0*+ D_s- PHSP;

Decay D_s+ K- K+ pi+ DS_DALITZ;

Decay D_s0*+ D_s+ pi0 PHSP;

- MC simulations: $D_s(2317)^+$ decays 100% to $D_s^+ \pi^0$
- Approach: D_s⁻ is reconstructed; D_s(2317)⁺ is obtained as <u>recoil</u> of D_s⁻ because of the higher rate

$$m_{recoil} = \sqrt{(M_{tot} - E_{D_s}^*)^2 - p_{D_s}^{*2}}$$

- MC simulation: the approach works by definition....
- DATA: everything allowed, on the D_s⁻ recoil; need to fix selection criteria to identify D_s(2317)⁺

MC simulation – EvtGen model

- Pre-selection skim:
 - PID
 - MC-truth matched candidates
 - p_{track} >100 MeV/c
 - p,>50 MeV/c
 - PndVtxFitter: Probχ²>0.01
 - POCAxyz <1 mm³

PANDA Charm meeting – 22.10.2015

6

- $D_s^- \rightarrow K^+ K^- \pi^-$
- Several structures inside the Dalitz plot: this is not smooth PHSP!
- K^+K^- invariant mass will be restricted to the ϕ signal area

consequence: efficiency decreases ~ 3 times; but bkg drastically reduced

E. Prencipe

ϕ signal area

DPM bkg scaled to arbitrary number: it is linear (no \overline{ss} structure in DPM)

Sig/Bkg discriminant: variables

∆E variable

- Difference between the energy of the D_s in the c.m. and its nominal value
- Expected a distribution centered in 0.
- Double gaussian parametrization for signal; polynomial for bkg

Selection variables

Selection cut

pre-selection $|POCA radius| < 100 \,\mu\text{m}$ $|POCA z| < 200 \,\mu\text{m}$ $m_{Ds \ Ds(2317)} > 4.25$ $\mathcal{F} > -0.038$ It will be replaced by BDT discr. $|\Delta E| < 0.04$ $|p_z^*| < 0.1$ $1.92 < m_{Ds} < 2.01$ $p_t \ (D_s) < 0.2$ $1.004 < m_{K+K^-} < 1.04$

- KK invariant mass cut: [1.004;1.04] GeV/c²
- Mass resolution: 14.56 MeV/c²
- P_{beam} is fixed. No smearing in pandaroot: some studies presented at Coll meeting Mar2014 when applying smearing $\Delta p/p \sim 10^{-4}$

Background sources

Channel:

nnel:
$$\overline{p}p \rightarrow D_s^{\pm} D_{s0}^* (2317)^+$$

 $D_s^{\pm} \rightarrow \phi \pi^{\pm}, \quad \phi \rightarrow K^+ K^-$
 $D_{s0}^* (2317)^{\mp} \rightarrow \text{anything}$

L - L - L - L - L - L - L

ToyMC study

Multi-dimensional fit are sensitive to measure observable with a resolution < than detector resolution

When bkg level is high, better chance to get the measurement

S/B = 1/3

ToyMC study

Multi-dimensional fit are sensitive to measure observable with a resolution < than detector resolution

When bkg level is high, better chance to get the measurement

S/B = 1/6

E. Prencipe

ToyMC study

Multi-dimensional fit are sensitive to measure observable with a resolution < than detector resolution

When bkg level is high, better chance to get the measurement

S/B = 1/12

ToyMC study

Multi-dimensional fit are sensitive to measure observable with a resolution < than detector resolution

When bkg level is high, better chance to get the measurement

E. Prencipe

17

ToyMC study

Multi-dimensional fit are sensitive to measure observable with a resolution < than detector resolution

When bkg level is high, better chance to get the measurement

tglied in der Helmholtz-

Master formula

with 1 MM*F* T M+M*

Critical points: statistic and systematic errors!