

Update on $\bar{p}p \rightarrow D_{s0}^* (2317)^+ D_s^-$

In preparation for the analysis note v3

November 19th, 2015 | Elisabetta Prencipe, Forschungszentrum Jülich | Open-Charm meeting

litglied in der Helmholtz-Gemeinsch

Outline

- Excitation function of the cross section
- S/B sensitivity studies
- Background rejection studies: LK, NN, BDT methods

tglied in der Helmholtz-Gemeinschaf

Master formula

■ Excitation function of the cross section for $\overline{p}p \rightarrow D_s^- D_s^* (2317)^+$

$$\sigma(s) = \frac{|\mathcal{M}|^2}{64 \cdot \pi \cdot p_1^* \cdot s} \quad \Phi(E)$$

$$\Phi(\mathsf{E}) = \frac{1}{\pi} \sqrt{\frac{\mathsf{MM}^*\Gamma^*}{\mathsf{M} + \mathsf{M}^*}} \int_{-\infty}^{\mathsf{E}} \mathsf{d}\delta \sqrt{\widetilde{\mathsf{E}} - \delta} \frac{1}{\delta^2 + 1}$$

$$M = M(D_s^-)$$

 $M^* = M(D_s^*(2317)^+)$

$$\Gamma^* = \Gamma(D_s^*(2317)^+)$$

 $s = square energy in the center-of-mass system <math>p_1^* = momentum of the antiproton beam$

$$\mathsf{E} = \sqrt{\mathsf{s} - \mathsf{M} - \mathsf{M}^*}$$

$$\widetilde{E} = 2 E/\Gamma^*$$

Many thanks to
Christoph Hanhart
for his extremely
useful help!

$$\mu = MM*/(M+M*)$$

$$\sqrt{E} \cdot \int d\delta / (\delta^2 + 1) = \pi$$

$$\Phi(\text{E}) \rightarrow \sqrt{\mu} \Gamma^* \ \sqrt{2\text{E}} / \Gamma^* \ = p^{\text{cm}}_{\text{Ds2317}}$$

for $\widetilde{E} >> 1$

tglied in der Helmholtz-Gemeinschaft

MC simulation – decay chain

noPhotos

Decay pbarpSystem
D_s0*+ D_s- PHSP;

- \blacksquare MC simulations: $D_s(2317)^{\scriptscriptstyle +}$ decays 100% to $D_s^{\scriptscriptstyle +}$ $\pi^{\scriptscriptstyle 0}$
- Approach: D_s^- is reconstructed; D_s^- (2317)⁺ is obtained as <u>recoil</u> of D_s^- because of the higher rate

$$m_{recoil} = \sqrt{(M_{tot} - E_{D_s}^*)^2 - p_{D_s}^{*2}}$$

- MC simulation: the approach works by definition....
- DATA: everything allowed, on the D_s^- recoil; need to fix selection criteria to identify $D_s(2317)^+$

Selection

Pre-selection	PID PndKinVxt fitter (prob, χ²) Track momentum Photon momentum
selection	φ mass range ΔE signal range Ds. Ds2317 mass range 3 charged track – Ds daug. BDT, NN, LK, F (5 var)

Aitalied in der Helmholtz-Gemeinscha

Sig/Bkg discriminant: 5 variables

tglied in der Helmholtz-Gemeinscha

Sig/Bkg discriminants

- 4 attempts: F, LK, MLP, BDT
- Macro used: /tutorial/analysis/TMVATrainer.C /tutorial/analysis/TMVATester.C (new trunk)

- Release oct14:
 - - ➤ >23 Tb (*pid.root)

litglied in der Helmholtz-Gemeinschaf

Likelihood vs NN

- Test: 200k sig, 45M DPM events
- PID
- PndKinFit
- Prob $\chi^2 > 0.01$; $\chi^2 < 14$
- Training: 5 variables

Pre-selection

- |∆E| < 50 MeV</p>
- 1.004< \$\phi\$ mass < 1.034 GeV/c²

LK, NN, BDT: mass distribution - comparison 💋 JÜLICH

Pre-selection+ |DE| + LK/NN/BDT +

Vertex cuts: |x|, |y| < 2 mm|z| < 3 mm

Mitglied in der Helmholtz-Gemeinsch

LK, NN, BDT comparison

Remaining DPM events, after Ds(2317) mass cuts: [2.24;2.38] GeV/c²

LK	NN	BDT
143	138	118

- With BDT cut, Nsig = 6326/200000 ~ 3.2%
- With Fisher discriminant, $\varepsilon \sim 2.2\%$
- With mass cut DsDs2317 >4.25 GeV/c², 0 DPM events remains

Need x10000 DMP stat

12

Mitglied in der Helmholtz-Gemeinscha

Background sources

Channel:
$$\bar{p}p \rightarrow D_s^{\pm}D_{s0}^*(2317)^{\mp}$$

$$D_s^{\pm} \rightarrow \phi \pi^{\pm}, \quad \phi \rightarrow K^{+}K^{-}$$

$$D_{s0}^*(2317)^{\mp} \rightarrow \text{ anything}$$

$$\bar{p}p \rightarrow KK\pi + \text{ anything}$$

$$\bar{p}p \rightarrow D_s^{\pm}D_s^{\mp}\pi^{0}$$

$$\bar{p}p \rightarrow D_s^{\pm}D_s^{\mp}2\pi^{0}$$

$$\bar{p}p \rightarrow D_s^{\pm}D_s^{\mp}2\pi^{0}$$

$$\bar{p}p \rightarrow D_s^{\pm}D_s^{\mp}\pi^{+}\pi^{-}$$

$$\bar{p}p \rightarrow D_s^{\pm}D_s^{*}\pi^{+}\pi^{-}$$

$$\bar{p}p \rightarrow D_s^{\pm}D_s^{*}\pi^{0}$$

ed in der Helmholtz-Gemeinschaft

ToyMC studies

Generated events: 550000

 $S/B \sim 5:1$ (signal area)

 $M_{tot} = 4286.430 \pm 0.021 \text{ MeV/c}^2$

- ϕ mass resolution ~ 4 Mev/c^{2\};
- ΔE resolution ~ 15 MeV;
- M_{tot} resolution ~ 0.9 MeV/c².

Loose cuts

Mitglied in der Helmholtz-Gemeinsch

ToyMC studies

S/B ~ 2:1 (signal area)

 $M_{tot} = 4286.520 \pm 0.026 \text{ MeV/c}^2$

ToyMC studies

S/B ~1:2 (signal area)

 $M_{tot} = 4286.530 \pm 0.043 \text{ MeV/c}^2$

Aitglied in der Helmholtz-Gemeinsch

ToyMC studies

Mitglied in der Helmholtz-Gemeinsch

ToyMC studies

fitglied in der Helmholtz-Gemeinscha

ToyMC studies

litglied in der Helmholtz-Gemeinschaft

ToyMC studies

S/B ~1:5 (signal area) 5500 Toy-events produced

reconstructed events in PANDA $M_{tot} = 4286.38 \pm 0.13 \text{ MeV/c}^2$

ToyMC studies

Only indetermination due to the \mathbf{M}_{tot} fit is included, for now.

Aitglied in der Helmholtz-Gemeinschaft

Marius' plot

- Formula here is valid for same particles in the final state
- Small differences with the correct formula for different particles in the final state, due to mass difference

Critical question: which precision we need (e.g. how long we have to run) to distinguish among different hypothesis?

Full simulation needed to understand

Mitglied in der Helmholtz-Gemeinschaft

Expected produced events

Input σ	Produced events	Produced events
(nb)	per day (HL)	per day (HR)
20	172 800	17 280
10	86 400	8640
5	43 200	4320
2	17 280	1728
1	8 640	864

- Conservative range: $\sigma [1 100]$ nb
- With $L = 10^{31}$ cm⁻² s⁻¹ (average), 864 produced events/day (hyp: $\sigma = 1$ nb)
- B factories:

```
S/B ~ 5/1, \epsilon = 8.2% in e<sup>+</sup>e<sup>-</sup> \rightarrowD<sub>s</sub> D<sub>s0</sub><sup>*</sup>(2317); Belle, Phys. Rev. Lett. 92, 012002 (2004) Phys. Rev. Lett. 91, 262002 (2003)
```

Belle II will collect 43750 $D_{s0}^{*}(2317)$ in 10 years ($\mathcal{L} = 50 \text{ ab}^{-1}$)

Up to know I got 3.2% reconstruction efficiency.....

itglied in der Helmholtz-Gemeinschaf

Open-issues

- Mass fit constraint to Ds mass: still to try, when I can run again jobs at GSI/prometheus
- Theoretical work on the master formula: how to publish that?
- PID: "best" and "VeryLoose" lists give comparable results.
- New cut, not still included: distance between the vertex of Ds and Ds2317.
- BDT is part on the analysis macro: it will be used in the analysis procedure. need to try on the full 400M DPM statistics.
- Optimization of the pdfs ongoing: need the full DPM statistics
- Need to optimize the χ^2 cut.
- Expected efficiency: a few point per cent!
- Need to select the best Ds candidate, yet.
- Only one Ds channel considered: $KK\pi$.
- A new version of the document will be uploaded, with the new ToyMc studies.

That's all for today!