Update on
 $\overline{\mathrm{p} p} \rightarrow \mathrm{D}_{\mathrm{s} 0}{ }^{*}(2317)^{+} \mathrm{D}_{\mathrm{s}}^{-}$

In preparation for the analysis note v3

November $19^{\text {th }}, 2015$ | Elisabetta Prencipe, Forschungszentrum Jülich | Open-Charm meeting

Outline

- Excitation function of the cross section
- S/B sensitivity studies
- Background rejection studies: LK, NN, BDT methods

Master formula

- Excitation function of the cross section for $\overline{\mathrm{p}} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{-} \mathrm{D}_{\mathrm{s}}{ }^{*}(2317)^{+}$

$$
\begin{aligned}
\sigma(s)= & \frac{|\mathscr{M}|^{2}}{64 \cdot \pi \cdot p_{1}{ }^{*} \cdot s} \Phi(E) \\
& \Phi(E)=\frac{1}{\pi} \sqrt{\frac{M M^{*} \Gamma^{*}}{M+M^{*}}} \int_{-\infty}^{E} d \delta \sqrt{E-\delta} \frac{1}{\delta^{2}+1}
\end{aligned}
$$

$$
M=M\left(D_{s}^{-}\right)
$$

$$
M^{*}=M\left(D_{s}^{*}{ }^{*}(2317)^{+}\right)
$$

$$
\Gamma^{*}=\Gamma\left(\mathrm{D}_{\mathrm{s}}^{*}(2317)^{+}\right)
$$

$\mathrm{s}=$ square energy in the center-of-mass system
$\mathrm{p}_{1}{ }^{*}=$ momentum of the antiproton beam
$\mathrm{E}=\mathrm{Vs}-\mathrm{M}-\mathrm{M}^{*}$
$\mathrm{E}=2 \mathrm{E} / \Gamma^{*}$

$$
\mu=\mathrm{MM} * /\left(\mathrm{M}+\mathrm{M}^{*}\right)
$$

$\sqrt{E} \cdot \int \mathrm{~d} \delta /\left(\delta^{2}+1\right)=\pi$
$\Phi(\mathrm{E}) \rightarrow \sqrt{\mu \Gamma^{*}} \sqrt{2 \mathrm{E}} / \Gamma^{*}=\mathrm{p}^{\mathrm{cm}}{ }_{\mathrm{D} 23317} \quad$ for $\mathrm{E} \gg 1$

Theoretical master formula

MC simulation - decay chain

noPhotos
Decay pbarpSystem
D_s0*+ D_s- PHSP;

- MC simulations: $\mathrm{D}_{\mathrm{s}}(2317)^{+}$decays 100% to $\mathrm{D}_{\mathrm{s}}{ }^{+} \pi^{0}$

Decay D_s+
K- K+ pi+ DS_DALITZ;

Decay D_s0*+

- Approach: $\mathrm{D}_{\mathrm{s}}{ }^{-}$is reconstructed;
$D_{s}(2317)^{+}$is obtained as recoil of D_{s}^{-} because of the higher rate

$$
m_{\text {recoil }}=\sqrt{\left(M_{t o t}-E_{D_{s}}^{*}\right)^{2}-p_{D_{s}}^{* 2}}
$$

- MC simulation: the approach works by definition....
- DATA: everything allowed, on the $\mathrm{D}_{\mathrm{s}}{ }^{-}$recoil; need to fix selection criteria to identify $D_{s}(2317)^{+}$

Selection

Pre-selection	$\begin{array}{c}\text { PID } \\ \text { PndKinVxt fitter (prob, } \chi^{2} \text {) } \\ \text { Track momentum } \\ \text { Photon momentum }\end{array}$
selection	$\begin{array}{c}\phi \text { mass range } \\ \Delta E \text { signal range } \\ \text { Ds. Ds2317 mass range } \\ 3 \text { charged track - Ds daug. } \\ \text { BDT, NN, LK, F (5 var) }\end{array}$

Sig/Bkg discriminant: 5 variables

Sig/Bkg discriminants

- 4 attempts: F, LK, MLP, BDT
- Macro used: /tutorial/analysis/TMVATrainer.C Thanks Klaus G. /tutorial/analysis/TMVATester.C (new trunk)
- Release oct14:
~ 800k DPM jobs, 500 events/each , ~29Mb/each $\longrightarrow>23$ Tb (*pid.root) 200k signal events, produced with EvtGen

Likelihood vs NN

- Test: 200k sig, 45M DPM events
a PID
a PndKinFit
- Prob $\chi^{2}>0.01 ; \chi^{2}<14$
- Training: 5 variables

Pre-selection

- Pre-selection $+|\Delta \mathrm{E}|+\phi$ cut

- $\mid \Delta$ El $<50 \mathrm{MeV}$
- $1.004<\phi$ mass $<1.034 \mathrm{GeV} / \mathrm{c}^{2}$

LK, NN, BDT: mass distribution - comparison

Pre-selection+ |DE| + LK/NN/BDT +

- Vertex cuts:
$|x|,|y|<2 \mathrm{~mm}$ $|z|<3 \mathrm{~mm}$

LK, NN, BDT comparison

- Remaining DPM events, after Ds(2317) mass cuts: [2.24;2.38] GeV/c ${ }^{2}$

LK	NN	BDT
143	138	118

- With BDT cut, Nsig $=6326 / 200000 \sim 3.2 \%$
- With Fisher discriminant, $\varepsilon \sim 2.2 \%$
- With mass cut DsDs2317 >4.25 GeV/c², 0 DPM events remains

Background sources

Channel: $\quad \overline{\mathrm{p}} \mathrm{p} \rightarrow D_{s}^{ \pm} D_{s 0}^{*}(2317)^{\mp}$

$$
\begin{aligned}
D_{s}^{ \pm} & \rightarrow \phi \pi^{ \pm}, \quad \phi \rightarrow K^{+} K^{-} \\
D_{s 0}^{*}(2317)^{\mp} & \rightarrow \text { anything }
\end{aligned}
$$

Channel	
$\overline{\mathrm{p}} \mathrm{p} \rightarrow \mathrm{KK} \pi+$ anything	-
$\overline{\mathrm{p}} \mathrm{p} \rightarrow D_{s}^{ \pm} D_{s}^{\mp} \pi^{0}$	
$\overline{\mathrm{p}} \mathrm{p} \rightarrow D_{s}^{ \pm} D_{s}^{\mp} 2 \pi^{0}$	
$\overline{\mathrm{p} p} \rightarrow D_{s}^{ \pm} D_{s}^{\mp} \pi^{+} \pi^{-}$	
$\overline{\mathrm{p} p} \rightarrow D_{s}^{ \pm} D_{s}^{* \mp}$	
$\overline{\mathrm{p}} \mathrm{p} \rightarrow D_{s}^{ \pm} D_{s}^{* \mp} \pi^{0}$	100 k
$\overline{\mathrm{p} p} \rightarrow D_{s}^{ \pm} D_{s}^{\mp} \gamma$	
$\overline{\mathrm{p} p} \rightarrow D_{s}^{ \pm} D_{s}^{* \mp} \gamma$	

$\sigma=53 \mathrm{mb} / 3=17.67 \mathrm{mb}$
σ same as signal

ToyMC studies

ToyMC studies

ToyMC studies

S/B $\sim 1: 2$ (signal area)
$M_{\text {tot }}=4286.530 \pm 0.043 \mathrm{MeV} / \mathrm{c}^{2}$

ToyMC studies

S/B ~1:3 (signal area)
$M_{\text {tot }}=4286.530 \pm 0.049 \mathrm{MeV} / \mathrm{c}^{2}$

ToyMC studies

S/B ~1:5 (signal area)
$M_{\text {tot }}=4286.350 \pm 0.061 \mathrm{MeV} / \mathrm{c}^{2}$

...work in progress...

ToyMC studies

S/B ~1:5 (signal area)

55000 Toy-events produced

$$
M_{t o t}=4286.350 \pm 0.097 \mathrm{MeV} / \mathrm{c}^{2}
$$

ToyMC studies

S/B ~1:5 (signal area) 5500 Toy-events produced $-$
reconstructed events in PANDA

$$
\mathrm{M}_{\mathrm{tot}}=4286.38 \pm 0.13 \mathrm{MeV} / \mathrm{c}^{2}
$$

ToyMC studies

Toy MC: master formula

Only indetermination due to the $M_{\text {tot }}$ fit is included, for now.

Marius' plot

- Formula here is valid for same particles in the final state
- Small differences with the correct formula for different particles in the final state, due to mass difference
- Critical question: which precision we need (e.g. how long we have to run) to distinguish among different hypothesis?

Full simulation needed to understand

Expected produced events

Input σ (nb)	Produced events per day (HL)	Produced events per day (HR)
20	172800	17280
10	86400	8640
5	43200	4320
2	17280	1728
1	8640	864

- Conservative range: σ [1-100] nb
- With $\mathbf{L}=\mathbf{1 0}^{\mathbf{3 1}} \mathbf{c m}^{-2} \mathbf{s}^{-1}$ (average), $\mathbf{8 6 4}$ produced events/day (hyp: $\boldsymbol{\sigma}=\mathbf{1 n b}$)
- B factories:
$\mathrm{S} / \mathrm{B} \sim 5 / 1, \varepsilon=8.2 \%$ in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{D}_{\mathrm{so}}{ }^{*}(2317)$;
$S / B \sim 2 / 1, \varepsilon \in[0.42-2.75] \cdot 10^{-4}$ through B decays.

Belle,
Phys. Rev. Lett. 92, 012002 (2004)
Phys. Rev. Lett. 91, 262002 (2003)

Belle II will collect $43750 \mathrm{D}_{\mathrm{so}}{ }^{*}(2317)$ in 10 years ($\mathscr{L}=50 \mathrm{ab}^{-1}$)
Up to know I got 3.2\% reconstruction efficiency.....

Open-issues

- Mass fit constraint to Ds mass: still to try, when I can run again jobs at GSI/prometheus
- Theoretical work on the master formula: how to publish that?
- PID: "best" and "VeryLoose" lists give comparable results.
- New cut, not still included: distance between the vertex of Ds and Ds2317.
- BDT is part on the analysis macro: it will be used in the analysis procedure. need to try on the full 400M DPM statistics.
- Optimization of the pdfs ongoing: need the full DPM statistics
- Need to optimize the χ^{2} cut.
- Expected efficiency: a few point per cent!
- Need to select the best Ds candidate, yet.
- Only one Ds channel considered: $\mathrm{KK} \pi$.
- A new version of the document will be uploaded, with the new ToyMc studies.

> That's all for today!

