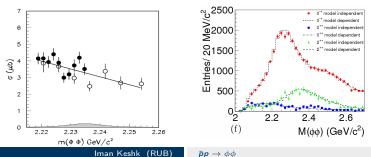
Feasibility Studies of $\bar{p}p \rightarrow \phi \phi$

Iman Keshk

Ruhr-University Bochum Institut für Experimentalphysik I

PANDA Online Physics Analysis Meeting, Feb 2020

UNIVERSITÄT RUB panda 651

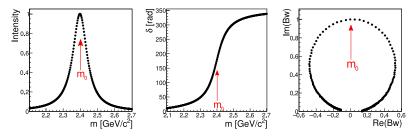

Motivation

• Lattice QCD calculations for tensor glueball $ightarrow m_{2^{++}} pprox 2.4\,{
m GeV}/c^2$

Phys.Rev. D73 (2006) 014516

- $\bar{p}p \rightarrow \phi \phi$ offers gluonrich environment
- JETSET experiment: $\bar{p}p \rightarrow \phi \phi$ cross section exceeds expectations by two order of magnitude *JETSET*, *Phys.Rev.D57*,5370
- Hint for intermediate glue?
- BNL and BESIII: Observation of $f_2(2010)$, $f_2(2300)$ and $f_2(2340)$ in $\pi^- p \rightarrow \phi \phi n$ and $J/\psi \rightarrow \gamma \phi \phi$ BNL, Phys.Lett.B201,568-572, BESIII,

Phys.Rev.D93,112011



Motivation

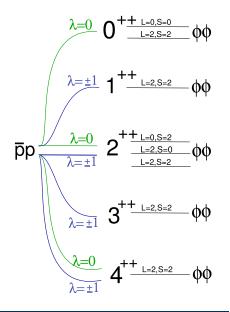
- Scan the $\bar{p}p \rightarrow \phi\phi$ cross section in the mass region of the observed tensor resonances (2.25 2.6 GeV) $\rightarrow 2^{++}$ resonances are produced in formation
- \bullet Identify resonances in the $\phi\phi$ system by means of a partial wave analysis
- Identifying contributing states?
 - \rightarrow Toy MC studies
- Identifying contributing states including acceptance/resolution of the PANDA detector
 - \rightarrow Study of simulated and reconstructed MC
- PWA software PAWIAN is used

Phase Motions of BW Resonances

Indications for the presence of a resonance with Breit-Wigner shape

- Phase-motion as an indication for the presence of a resonance
- Only relative phases extractable
 → A stable, slowly changing reference phase needed!
- Model independent PWA gives hints about contributing resonances
- Model dependent PWA gives further information (pole positions, coupling strengths etc.)

pp Annihilation


- Amplitudes described by helicity formalism $\rightarrow \lambda = \vec{s} \cdot \vec{p}$
- $\bar{p}p$ system couples to spin singlet $\lambda = 0$ and spin triplet $\lambda = \pm 1, 0$ states

J	Singlet	JPC	Triplet	JPC	Triplet	JPC
	$\lambda = 0$		$\lambda=\pm 1$		$\lambda = 0, \pm 1$	
0	${}^{1}S_{0}$	0-+			³ P ₀	0++
1	${}^{1}P_{0}$	1^{+-}	³ P ₁	1^{++}	${}^{3}S_{1}, {}^{3}D_{1}$	$1^{}$
2	$^{1}D_{2}$	2^{-+}	³ D ₂	2	${}^{3}P_{2}, {}^{3}F_{2}$	2^{++}
3	${}^{1}F_{3}$	3+-	³ F ₃	3++	$^{3}D_{3},^{3}G_{3}$	3
4	${}^{1}G_{4}$	4-+	³ G ₄	4	${}^{3}F_{4}, {}^{3}H_{4}$	4++
5	${}^{1}H_{5}$	5^{+-}	³ H ₅	5++	${}^{3}G_{5}, {}^{3}I_{5}$	5
6	¹ <i>I</i> ₆	6-+	³ I ₆	6	${}^{3}H_{6}, {}^{3}J_{6}$	6++

pp Annihiliation

• Possible resonances for X in $\bar{p}p \to X \to \phi \phi ~(J^{PC}(\phi) = 1^{--})$

J	Singlet	J ^{PC}	Triplet	JPC	Triplet	J ^{PC}
	$\lambda = 0$		$\lambda=\pm 1$		$\lambda=0,\pm 1$	
0	${}^{1}S_{0}$	0-+			³ P ₀	0++
1			³ P ₁	1++		
2	${}^{1}D_{2}$	2-+			${}^{3}P_{2}, {}^{3}F_{2}$	2++
3			³ F ₃	3++		
4	¹ G ₄	4-+			${}^{3}F_{4}, {}^{3}H_{4}$	4++
5			${}^{3}H_{5}$	5^{++}		
6						

- L = Angular momentum
- S = Spin
- $\bullet \ \lambda = {\rm Helicity}$
- $\phi \rightarrow K^+ K^-$ only possible via L = 1, S = 0
- Different production and decay modes for intermediate resonances

ightarrow 6 partial waves for $X=2^{++}$

• Results shown for partial wave $2^{++}{}_{\lambda=0/L=0,S=0}$

Weight Function and Selection of Hypotheses

•
$$w = \left| \sum A_{\lambda=0}^{S=0} \right|^2 + \left| \sum A_{\lambda=0}^{S=1} \right|^2 + \left| \sum A_{\lambda=0}^{S=1} \right|^2 + \left| \sum A_{\lambda=1}^{S=1} \right|^2$$

- Since the full decay tree is taking into account, the weight function contains the transition amplitudes $X \to \phi_1 \phi_2$, $\phi_1 \to K_1^+ K_1^-$ and $\phi_2 \to K_2^+ K_2^-$
- Which resonances are contributing?
 → Hypotheses with assumptions about contributing states, production and decay amplitudes
 > Which the order is first the head?
 - \rightarrow Which Hypothesis fits the best?
- AIC and BIC information criteria from model selection theory

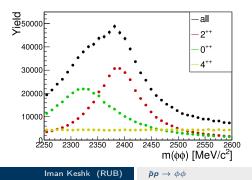
K.P. Burnham, D.R. Anderson, Model Selection and Multimodel Inference, Springer, 2002

$$IC = -2 \cdot ln(\mathcal{L}) + 2 \cdot k \qquad k = \text{number of free parameters}$$

$$BIC = -2 \cdot ln(\mathcal{L}) + k \cdot ln(n)$$

n = number of data points

Toy MC Studies


Breit-Wigner Scenario

K-Matrix Scenario

Generated Data Sets

- 36 data points between 2.25 GeV and 2.6 GeV
- Distance between each point = 10 MeV
- Bin width each point = 200 keV \rightarrow Due to high HESR beam resolution
- 10⁴ toy MC events per scan point with $\bar{p}p \rightarrow X \rightarrow \phi\phi \rightarrow K^+K^-K^+K^-$, $X = 0^{++}, 2^{++}, 4^{++}$
- All dynamics described by relativistic BW functions

Mass Independent PWA

• Decay dynamics fixed for each scan point

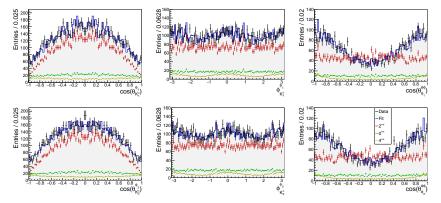
 \rightarrow No need to chose a model

 \rightarrow Extracting complex amplitudes by performing individual partial wave fits for each scan point

- \rightarrow Event based maximum likelihood fits
- 31 possible hypotheses need to be fitted to the data
 - ightarrow Selection of best Hypothesis via AIC and BIC (AIC+BIC) criteria
- Best Hypothesis : 30 scan points $\rightarrow 0^{++}2^{++}4^{++}$

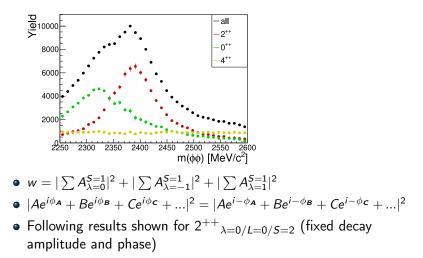
6 scan points \rightarrow 0⁺⁺2⁺⁺4⁺⁺ + X

• Contribution of X < 1% and scan points appear arbitrary in mass range \rightarrow can be neglected

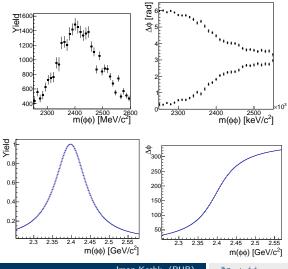

AIC+BIC	Hypothesis $at(\sqrt{s} = 2.4 \text{ GeV})$	AIC+BIC	Hypothesis $at(\sqrt{s} = 2.42 \text{ GeV})$
-47589.5	0++2++4++	-47150.7	0++2++4++3++
-47575.5	0++2++4++1++	-47132.7	0++2++4++
-46886.3	0++2++4++3++	-46682.7	0++2++4++1++3++
-46483.5	$0^{++}2^{++}1^{++}$	-46661.1	0++2++4++1++

Iman Keshk (RUB)

 $\bar{p}p \rightarrow \phi \phi$


Mass Independent PWA - Angular Distributions

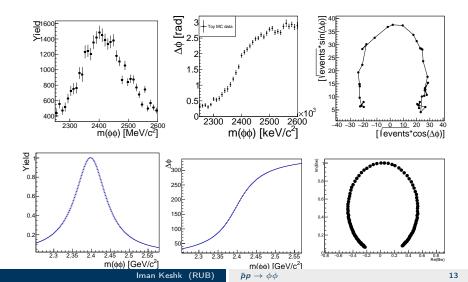
Fit in good agreement with generated data Angular distributions for bin at 2.4 GeV


Mass Independent PWA - Contributions

• Contributions in good agreement with generated ones

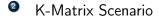
Mass Independent PWA - Contributions and Phases

 \rightarrow "Trivial ambiguites" NOT to be confused with "Non-trivial ambiguities" seen in $J/\psi \rightarrow \gamma \pi^0 \pi^0 \dots BESIII, Phys.Rev.D92,5$



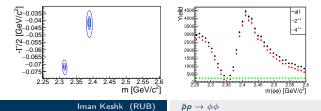
Iman Keshk (RUB)

 $\bar{p}p \rightarrow \phi\phi$


Mass Independent PWA - Phases and Ambiguities

 \rightarrow "Trivial ambiguites" NOT to be confused with "Non-trivial ambiguities" seen in $J/\psi \rightarrow \gamma \pi^0 \pi^0 \dots BESIII, Phys.Rev.D92,5$

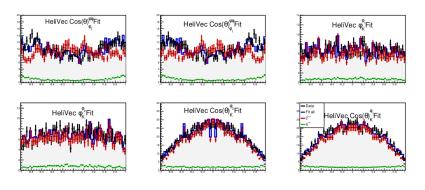
Toy MC Studies

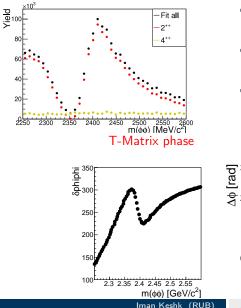


Generated Data Sets

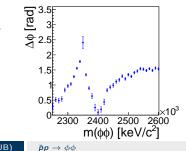
- Mass range, bin width and distance between scan points equal to BW scenario
- 10⁴ toy MC events per scan point with $\bar{p}p \rightarrow X \rightarrow \phi\phi \rightarrow K^+K^-K^+K^-$, $X = 2^{++}, 4^{++}$
- 2⁺⁺ dynamics described by K-Matrix formalism with two poles decaying to two channels

$$ar{p} p o X o \phi \phi$$
, $ar{p} p o X o K^+ K^-$

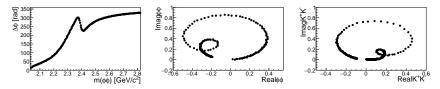

Pole	mass [GeV/ c^2]	width [MeV/ c^2]	₿ĸ+ĸ-	$g_{\phi\phi}$
1	2.32	144	0.1	0.64
2	2.39	83	0.47	0.57


15

Mass Independent PWA - Angular Distributions


- Hypotheses tests and selection of hypothesis equal to BW scenario
- Hypothesis containing only $2^{++}4^{++}$ chosen as best hypothesis
- Angular distributions for bin at 2.4 GeV

Mass Independent PWA - Contributions and Phases



- Contributions in good agreement with generated ones
- "Non-trivial" ambiguities and visible extracted phase motion
- Extracted phase is not! T-Matrix phase (Work in progess) Extracted $\phi_{\lambda=0,L=0,S=2}$

Model Dependent Coupled Channel PWA

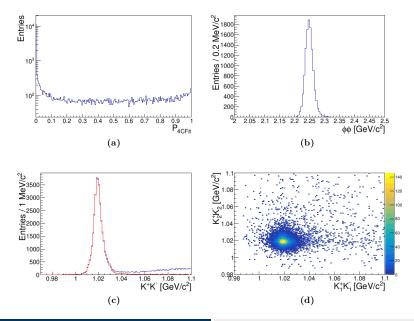
- Identifying contributing states via mass independent PWA
 → Choose reasonable model for model dependent PWA
- Gives access to coupling strength, pole positions etc.
- Coupling of multiple channels possible

• Performance of coupled channel PWA with $\bar{p}p \rightarrow X \rightarrow \phi \phi$ $\bar{p}p \rightarrow X \rightarrow K^+ K^-$

Studies Including Detector Simulation

Technical Aspects

- PandaRoot release oct19
- Phase 1 detector setup
- Ideal track reconstruction
- Track reconstruction with kaon hypothesis
- Each scan point is simulated and reconstructed individually
- Simulation of generated Events containing proper angular distributions
- Simulation of PHP distributed events


Event Selection

- List of $\bar{p}p$ candidates by forming all combinations of 2 K^+ and 2 K^-
- Loose PID
- Vertex Fit (RhoKinVtxFitter) P > 0.001
- 4C Fit (RhoKinFitter) P > 0.001
 → additional cut on p̄p mass to eject events which violate energy conservation

•
$$r = \sqrt{(m(K_1K_2) - m_{\phi})^2 + (m(K_3K_4) - m_{\phi})^2} < 12 \text{ MeV}/c^2$$

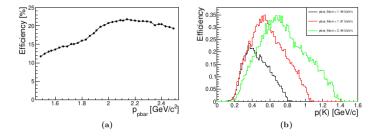
- More then 99% of events have 4 particles with kaon pdg code in final state
- After applying all selection criteria only one remaining combination for > 99% of events
- Eject events with more then one combination

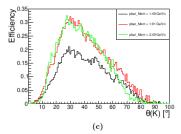
Event Selection for $p_{\bar{p}} = 1.5 \,\text{GeV}$

Iman Keshk (RUB)

 $\bar{p}p \rightarrow \phi\phi$

DPM Background Studies at $p_{\bar{p}} = 1.5 \, \text{GeV}$


• Selected data sample needs to be as clean as possible for PWA


•
$$C = \frac{N_{bg}}{N_{data}} = \frac{\sigma_{bg} \cdot \epsilon_{bg}}{\sigma_{bg} \cdot \epsilon_{bg} + \sigma_{signal} \cdot BR(\phi \rightarrow K^+K^-)^2 \cdot \epsilon_{signal}} < 0.01$$

 $\frac{\sigma_{bg}}{\sigma_{signal}} \sim 3.33 \cdot 10^4$
 $\epsilon_{signal} \sim 11\%$
 $BR(\phi \rightarrow K^+K^-) = 49\%$
 $\rightarrow \epsilon_{bg} < 8 \cdot 10^{-9}$
 $\rightarrow N_{bg,gen} = \frac{1}{\epsilon_{bg}} > 1.25 \cdot 10^8$

- $1.27 \cdot 10^8$ DPM events generated of which $8 \cdot 10^6$ were fully simulated and reconstructed due to pre-filter
- Analysis techniques for 4K events (future): Consider in PWA or Q-factor method (Journal of Instrumentation 4 no.10, 2009, P10003)

Final State	No. evts. (Without PID)	No. evts. (Final event selection)
$\pi^+\pi^-\pi^+\pi^-$	10	0
$ar{p} p \pi^+ \pi^-$	12	0
$K^+K^-K^+K^-$	4	4
	· · · · · · · · · · · · · · · · · · ·	

Selection efficiencies

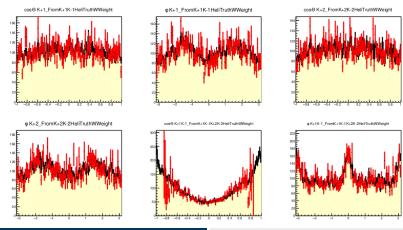
Iman Keshk (RUB) $\bar{p}p \rightarrow \phi \phi$

Approx. Run Time

- Run time taking into account: signal cross sections (JETSET), efficiency, luminosity (HESR) K. Götzen, Average Luminosities and Event Rates at PANDA, 2015
- $\bullet\,$ Run time for 36 scan points with 10^4 reconstructed events per point <1 week

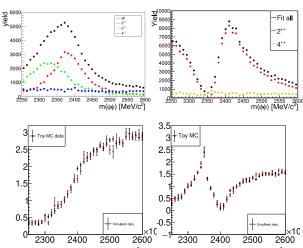
$p_{\overline{p}}$ [GeV/c]	1.49	1.52	1.55	1.57	1.60	1.63
ϵ [%]	11.75	12.47	13.04	13.30	13.61	14.12
\overline{L}_{HESRr} [(nb·d) ⁻¹]	788	792	796	800	804	809
Run time [h]	3.6	3.4	4.8	4.7	4.6	4.4
$p_{\bar{p}}[\text{GeV/c}]$	2.11	2.14	2.17	2.20	2.23	2.26
ϵ [%]	21.43	21.78	21.56	21.43	21.27	21.29
$\overline{L}_{\text{HESRr}}$ [(nb·d) ⁻¹]	875	878	881	885	888	891
Run time [h]	2.7	2.6	2.6	2.6	2.6	2.6

Studies Including Detector Simulation



Reconstruction with PandaRoot

PWA with Simulated Events - Fits


- Same fit and analysis procedure like Toy MC analysis
- Fit in good agreement with data
- Efficiency correction needed
- Angluar distributions for bin at 2.25 GeV (BW-Scenario)

Iman Keshk (RUB)

PWA with Simulated Events - Contributiones and Phases

 Good agreement between extracted phases and contributions of Toy MC and simulated data

BW scenario

KM scenario

Summary and Conclusion

- The reaction $\bar{p}p \rightarrow \phi \phi \rightarrow 4K$ was generated with angular distributions according to assumed resonance model using PAWIAN
- PWA and model selection tested for simple Breit-Wigner and sophisticated K-Matrix scenario
 → Identification of contributing resonances feasible
- Reconstruction of generated events including efficiency and resolution of the PANDA detector
- DPM background study
 - \rightarrow Non 4K background events can be suppressed sufficiently
- Good agreement between extracted phases and contributions of toy MC and reconstructed MC
- Estimated run time for scan: < 1 week