

REPORT ON STUDY OF EXCITED E BARYONS

07.04.2020 I PHYSICS ANALYSIS MEETING | JENNY PÜTZ

Overview

- Recent Studies
 - $\bar{p}p \rightarrow \bar{\Xi}^{+}\Lambda K^{-}$ with the DecayTreeFitter (RN-QCD-2020-001)
 - $\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^- \pi^0$ with step-by-step procedure (RN-QCD-2018-002)
 - Planned paper including both studies -> Journal: Phys Rev C
 - First draft presented here

Paper Draft

Study of Excited Ξ Baryons with the $\overline{P}ANDA$ Detector

Jennifer Pütz *1, Albrecht Gillitzer¹, James Ritman^{1,2}, Tobias Stockmanns¹ and the \overline{P} ANDA Collaboration

¹Forschungszentrum Jülich, Jülich, Germany ²Institut für Experimentalphysik, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany

Contents

1	Introduction	1
2	$\overline{ ext{P}}$ ANDA	1
3	Event generation and Track Reconstruction & Filtering 3.1 Event generation	
4	The Full Decay Tree Fit Procedure	5
5	$ \begin{array}{llll} \textbf{Event Reconstruction} \\ 5.1 & \bar{p}p \to \bar{\Xi}^+ \Lambda K^- + c.c \\ 5.2 & \bar{p}p \to \bar{\Xi}^+ \Xi^- \pi^0 \end{array} . \qquad . \qquad . \qquad . \qquad . $	6 6 10
6	Background Studies	14
7	Results and Discussion	15
8	Summary and Outlook	16

Introduction

Physics motivation

PANDA

- General description of the PANDA detector
- Description of the Software frame with focus on track reconstruction

Event Generation and Track Reconstruction & Filtering

Event Generation

- Signal events generated with EvtGen at $p_{\overline{p}}=4.6~{
 m GeV/c^2}$
- population of following resonant states
 - $\Xi(1530)^-$, $\overline{\Xi}(1530)^+$
 - $\Xi(1690)^-$, $\Xi(1690)^+$
 - $\Xi(1820)^-$, $\bar{\Xi}(1820)^+$
- Decay channels: ΛK and $\Xi \pi^0$
- Beside resonant states also continuum contribution generated
- to avoid unwanted final states $BR(\Lambda \rightarrow p\pi) = 100\%$ instead of 63.4%

Event Generation and Track Reconstruction & Filtering

Track Reconstruction & Filtering

- Ideal Pattern recognition is used
- Issue: tracks with low hit multiplicity are reconstructed
- Track filter: final state particles with at least 4 hits in MVD, STT or GEM considered as candidates

Full Decay Tree Fit Procedure

- Gives overview on the method
- Which parameters are used?
- How is the decay tree fit parameterized?
- Used constraints
- Order in which the constraints are applied.

Event Reconstruction

- $\bar{p}p \rightarrow \bar{\Xi}^+ \Lambda K^-$ and c.c.
 - Reconstruction of the final state particles (open PID)
 - Only mass window cut on intermediate states
 - Full tree reconstruction with DecayTreeFitter (vertex + momentum resolution, reconstruction efficiency, mass and width of resonances)
- $\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^- \pi^0$
 - Final state reconstruction with ideal PID
 - Intermediate states selection based on sequential fit procedure (vertex fit and mass constraint fit)
 - Full tree reconstruction: 4C-fit, additional cut to reduce outliers

Background Studies

- Generation of background sample with DPM
- Number of analyzed DPM events:
 - $\bar{p}p \rightarrow \bar{\Xi}^+ \Lambda K^- + c.c. : 100 million$
 - No surviving event
 - $\bar{p}p \rightarrow \bar{\Xi}^+ \Xi^- \pi^0$: 22 million
 - 2 surviving events
 - Additional cuts on: proper time value of Λ and $\overline{\Lambda}$, and distance between Ξ and $\overline{\Xi}$
 - Removed the two surviving events

Results

Reconstruction efficiency of the final selected samples

	$\overline{\Xi}^+ \Lambda K^-$	$\Xi^- \overline{\Lambda} K^-$	$\overline{\Xi}{}^{+}\Xi^{-}\pi^{0}$
Reco. eff .[%]	5.4	5.5	3.5
Purity [%]	97.7	97.7	94.1

Figure 5: Dalitz plot for the final selected $\overline{\Xi}^+\Lambda K^-$ candidates.

Panda

Results

Figure 8: Mass distribution of Λ K⁻ with fit function containing two Voigt functions and a polynomial.

Figure 13: Mass distribution of the final selected $\Xi^ \pi^0$ sub-system. The used fit function to determine the mass and the width of the contributing resonances is shown in red.

Results

	$\overline{\Xi}^+\Lambda { m K}^-$	$\overline{\Xi}^+\Xi^-\pi^0$
$\Xi (1530)^{-}$	-	$1.5352\mathrm{GeV/c^2}$
$\overline{\Xi} (1530)^+$	-	$1.5351\mathrm{GeV/c^2}$
$\Xi (1690)^{-}$	$1.6899{ m GeV/c^2}$	$1.6901 { m GeV/c^2}$
$\overline{\Xi} (1690)^+$	$1.6902{ m GeV/c^2}$	$1.6898{ m GeV/c^2}$
$\Xi (1820)^{-}$	$1.8229{ m GeV/c^2}$	$1.8202{ m GeV/c^2}$
$\overline{\Xi} (1820)^+$	$1.8231\mathrm{GeV/c^2}$	$1.8201\mathrm{GeV/c^2}$

Table 12: Signal-to-background ratio and signal significance.

	$\overline{\Xi}^+ \Lambda K^-$	$\Xi^- \bar{\Lambda} K^+$	$\overline{\Xi}^+\Xi^-\pi^0$
$\overline{S/B}$	> 19.1	> 19.5	> 4.6
$S_{ m sig}$	> 513	> 507	> 349

Production Rates: $(L = 10^{31} \text{ cm}^{-2} \text{s}^{-1})$

- $\bar{\Xi}^+ \Lambda K^- + \text{c.c} (\sigma_{sig} = 1 \,\mu\text{b})$: 38,500 per day => 15 days
- $\bar{\Xi}^+ \Xi^- \pi^0 (\sigma_{sig} = 2 \,\mu b)$: 22,800 per day => 7 days

Current Status/Request

First draft

- Nearly ready for upload
- Few changes have to be made

Release Notes

- RN-QCD-2020-001 ready and no longer marked as "pending"
- RN-QCD-2018-002 still pending, last comment September 2018

Request

- Approve Release Notes
- Install committee

Thank you for your attention

Page 14