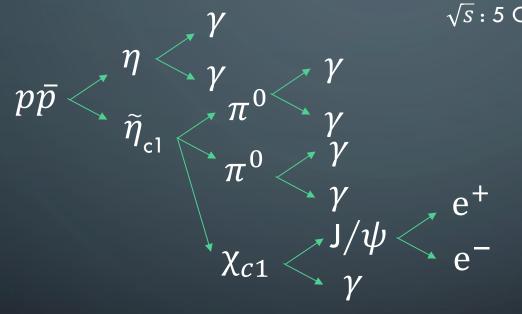
FHR

Helmholtz International Center

ANALYZING A COMPLEX DECAY CHANNEL BY USING GENETIC ALGORITHM

ÁRON KRIPKÓ FOR THE PANDA COLLABORATION

a. G. brinkmann



 \bigcirc

 $\sqrt{s}: 5 \text{ GeV}$

 \bigcirc

BACKGROUND

PHSP: # x-sec =

12.059 mub

0.2110 pi+ pi+ pi- pi- pi0 pi0 pi0 pi0 0.0994 pi+ pi+ pi- pi- pi0 pi0 pi0 eta 0.0697 pi- p+ anti-n0 pi0 pi0 pi0 0.0692 pi+ anti-p- n0 pi0 pi0 pi0 0.0463 pi+ pi- n0 anti-n0 pi0 pi0 pi0 0.0387 pi+ pi- pi0 pi0 pi0 pi0 0.0379 pi+ pi- pi- p+ anti-n0 pi0 pi0 pi0 0.0367 pi+ pi+ pi- anti-p- n0 pi0 pi0 pi0 0.0231 pi+ anti-p- n0 pi0 pi0 eta 0.0227 pi- p+ anti-n0 pi0 pi0 eta 0.0227 pi+ pi- p+ anti-p- pi0 pi0 pi0 pi0 0.0204 pi+ pi- pi0 pi0 pi0 eta 0.0179 p+ anti-p- pi0 pi0 pi0 pi0 0.0151 pi+ pi+ pi- pi- pi0 pi0 eta eta 0.0147 pi- p+ anti-n0 pi0 pi0 pi0 pi0 0.0142 pi+ anti-p- n0 pi0 pi0 pi0 pi0 0.0140 pi+ pi+ pi- pi- pi0 pi0 pi0 gamma 0.0140 pi+ pi- p+ anti-p- pi0 pi0 pi0 eta 0.0135 p+ anti-p- pi0 pi0 pi0 eta pi+ pi- n0 anti-n0 pi0 pi0 eta 0.0133 0.0124 pi+ pi+ pi- pi- pi0 pi0 pi0 gamma 0.0106 pi+ pi+ pi- anti-p- n0 pi0 pi0 eta 0.0104 pi+ pi- pi- p+ anti-n0 pi0 pi0 eta 0.0091 pi- p+ anti-n0 pi0 pi0 pi0 eta 0.0088 pi+ anti-p- n0 pi0 pi0 pi0 eta 0.0086 pi+ pi- K+ K- pi0 pi0 pi0 pi0 0.0084 pi+ pi+ pi- K- pi0 pi0 pi0 K L0 0.0084 pi+ pi- pi- K+ pi0 pi0 pi0 K L0 0.0079 pi+ pi+ pi- pi- n0 anti-n0 pi0 pi0 pi0 0.0064 pi+ pi- n0 anti-n0 pi0 pi0 K_L0 0.0051 pi+ pi- K+ K- pi0 pi0 pi0 eta 0.0046 pi+ pi+ pi- pi- pi0 pi0 pi0 gamma eta 0.0045 pi+ pi- pi- p+ anti-n0 pi0 pi0 pi0 pi0

PHSP; # x-sec =	571.565 mub 0.0043	pi+ pi+ pi- anti-p- n0 pi0 pi0 pi0 pi0	PHSP; # x-sec =	11.784
PHSP; # x-sec =	269.277 mub 0.0042	n0 anti-n0 pi0 pi0 gamma K_S0	PHSP; # x-sec =	11.344
PHSP; # x-sec =	188.941 mub 0.0041	pi+ pi- pi0 pi0 pi0 K_S0 K_L0	PHSP; # x-sec =	11.117
PHSP; # x-sec =	187.574 mub 0.0041	pi+ pi- n0 anti-n0 pi0 pi0 gamma	PHSP; # x-sec =	11.090
PHSP; # x-sec =	125.389 mub 0.0037	pi+ pi+ pi- pi- pi0 pi0 gamma eta	PHSP; # x-sec =	9.941
PHSP; # x-sec =	104.942 mub 0.0036	pi+ pi- pi0 pi0 eta eta	PHSP; # x-sec =	9.862
PHSP; # x-sec =	102.683 mub 0.0035	pi+ pi- pi- K+ pi0 pi0 pi0 pi0 K_LO	PHSP; # x-sec =	9.434
PHSP; # x-sec =	99.497 mub 0.0035	pi+ pi+ pi- K- pi0 pi0 pi0 pi0 K_LO	PHSP; # x-sec =	9.350
PHSP; # x-sec =	62.563 mub 0.0034	pi+ pi+ pi- pi- pi0 pi0 pi0 gamma gamma	PHSP; # x-sec =	9.124
PHSP; # x-sec =	61.542 mub 0.0033	pi+ pi- pi- K+ pi0 pi0 eta K_LO	PHSP; # x-sec =	8.867
PHSP; # x-sec =	61.541 mub 0.0032	pi+ anti-p- n0 pi0 pi0 gamma K_L0	PHSP; # x-sec =	8.592
PHSP; # x-sec =	55.196 mub 0.0030	pi- p+ anti-n0 pi0 pi0 gamma K_LO	PHSP; # x-sec =	8.148
PHSP; # x-sec =	48.600 mub 0.0029	pi+ pi- n0 anti-n0 pi0 pi0 gamma K_SO	PHSP; # x-sec =	7.879
PHSP; # x-sec =	40.853 mub 0.0028	pi+ pi+ pi- pi- pi0 pi0 pi0 K_L0 K_L0	PHSP; # x-sec =	7.634
PHSP; # x-sec =	39.750 mub 0.0027	pi+ pi- p+ anti-p- pi0 pi0 pi0 gamma	PHSP; # x-sec =	7.437
PHSP; # x-sec =	38.384 mub 0.0026	pi- p+ anti-n0 pi0 pi0 pi0 K_S0	PHSP; # x-sec =	6.909
PHSP; # x-sec =	37.962 mub 0.0025	pi+ pi+ pi- anti-p- n0 pi0 pi0 pi0 eta	PHSP; # x-sec =	6.829
PHSP; # x-sec =	37.943 mub 0.0025	pi+ anti-p- n0 pi0 pi0 pi0 K_L0	PHSP; # x-sec =	6.773
PHSP; # x-sec =	36.442 mub 0.0025	pi- p+ anti-n0 pi0 pi0 pi0 K_L0	PHSP; # x-sec =	6.727
PHSP; # x-sec =	35.934 mub 0.0025	pi+ anti-p- n0 pi0 pi0 pi0 K_S0	PHSP; # x-sec =	6.704
PHSP; # x-sec =	33.476 mub 0.0024	K+ anti-p- n0 pi0 pi0 pi0	PHSP; # x-sec =	6.560
PHSP; # x-sec =	28.786 mub 0.0023	pi+ pi- pi- p+ anti-n0 pi0 pi0 pi0 eta	PHSP; # x-sec =	6.185
PHSP; # x-sec =	28.252 mub 0.0023	pi+ pi- pi0 pi0 pi0 pi0 gamma	PHSP; # x-sec =	6.168
PHSP; # x-sec =	24.763 mub 0.0022	K- p+ anti-n0 pi0 pi0 pi0	PHSP; # x-sec =	6.092
PHSP; # x-sec =	23.759 mub 0.0021	pi+ pi- p+ anti-p- pi0 pi0 pi0 K_LO	PHSP; # x-sec =	5.781
PHSP; # x-sec =	23.251 mub 0.0021	pi+ pi+ pi- pi- n0 anti-n0 pi0 pi0 eta	PHSP; # x-sec =	5.770
PHSP; # x-sec =	22.728 mub 0.0021	p+ anti-p- pi0 pi0 pi0 K_L0	PHSP; # x-sec =	5.716
PHSP; # x-sec =	22.671 mub			
PHSP; # x-sec =	21.409 mub			
PHSP; # x-sec =	17.336 mub			
PHSP; # x-sec =	13.869 mub			
PHSP; # x-sec =	12.459 mub			

3

mub

mub

mub

mub

mub

mub

mub

mub mub

mub

mub

mub

mub mub

mub

mub

mub

mub

mub

mub

mub

mub

mub

mub

mub

mub mub

 \mathbf{x}

CROSS-SECTION AND BRANCHING FRACTIONS

39.41% 98.823% η π^{0} $p\bar{p}$ $\tilde{\eta}_{\rm cl}$ π^0 e+ J/ψ 33 pb e χ_{c1} Unknown: 100% 6% 34.3%

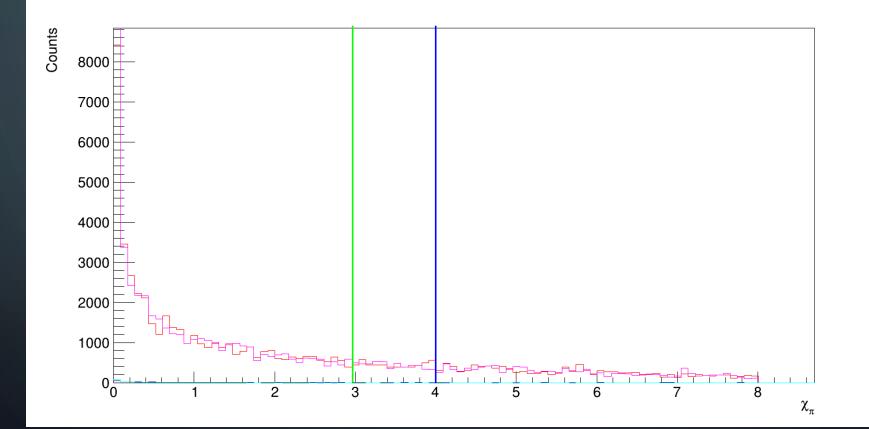
60000 signal – 6 10¹⁴ background

CUTS

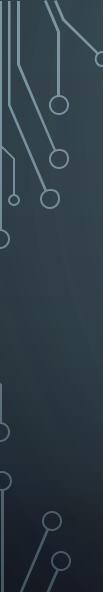
- 60000 signal
- 60000 background
- The background was scaled for the significance calculation

- The new clustering algorithm was used
 - Better neutral reconstruction
 - Available in the PandaRoot dev

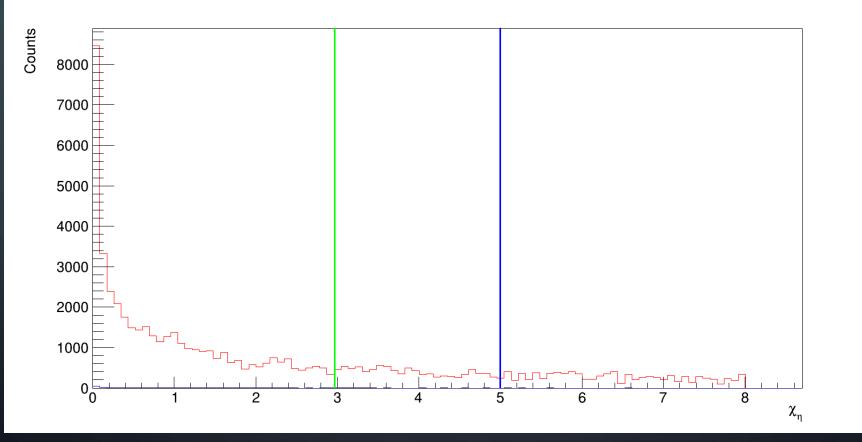
GENETIC ALGORTIHM

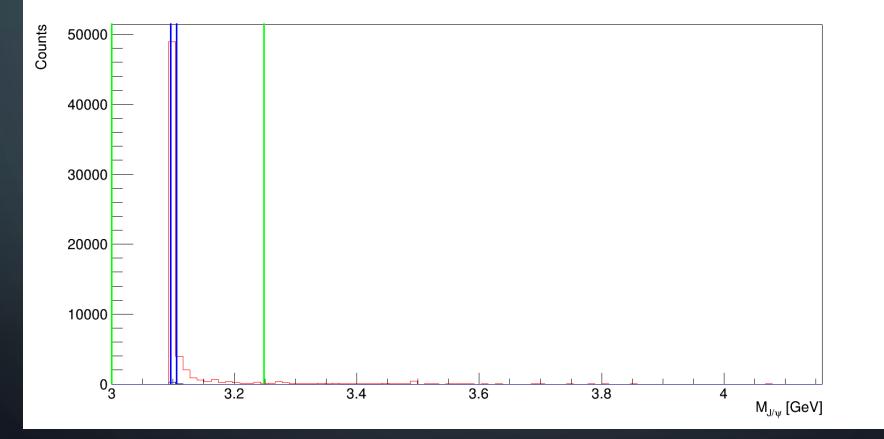

- Continued the work of Christian Will
- Inspired by natural selection
- Used when the evaluation of the fitness function takes many time
- Mutation: randomly modify a parameter with a few percent
- Cross-over: generate new individulas by taking parameters from 2 or more individuals

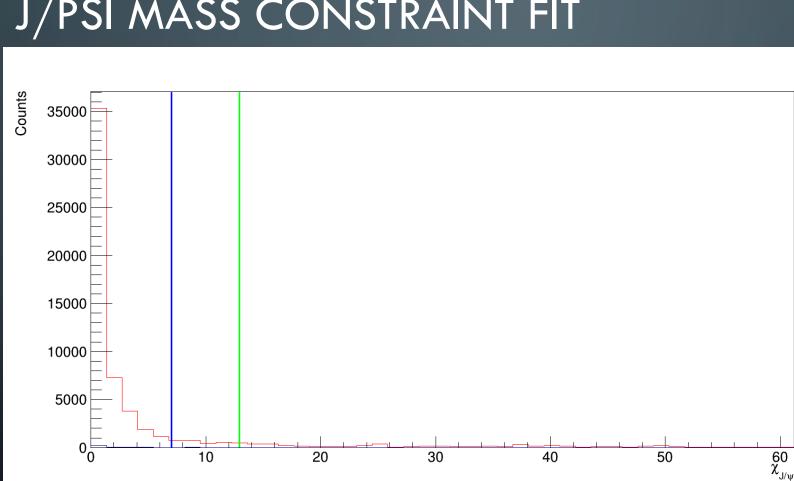
- Selection: Delete the worst individuals
- Drawback: not scale well with complexity


Parameter	Simulated	NTuple	Hand	Genetic
Pion mass	-	0.132-0.138	0.1349-0.1354	0.107-0.169
Eta mass	-	0.048-1.048	0.5477-0.5494	0.046-1.047
Muon mass	-	0-0.3	0-1.1	0.045-0.231
J/psi mass	-	0.09-6.09	3.0965-3.106	2.241-3.249
Chi_c mass	-	0.51-6.51	3.48-3.55	3.497-3.707
Eta_c1 mass	-	3.3-5.3	4.1-4.5	3.948-4.604
Pbarp mass	-	3.9-6.2	4.939-5.058	4.992-5.37
Pion chi	-	8	4	2.971
Eta chi	-	8	5	2.971
J/psi chi	-	-	7	12.941
J/psi vertex chi	-	40	4	23.286
Pbarp chi	-	20	3	3.356
Significance	0	0	0.01397	4.82759
FTM	467	292	179	133

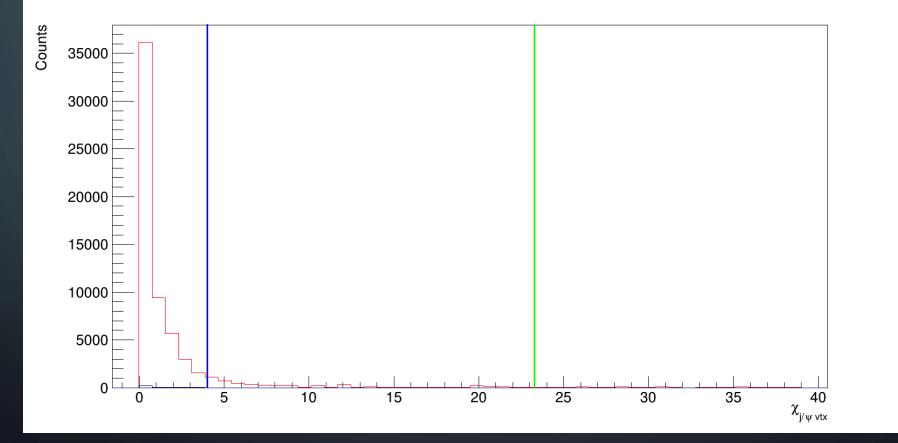
LEGEND

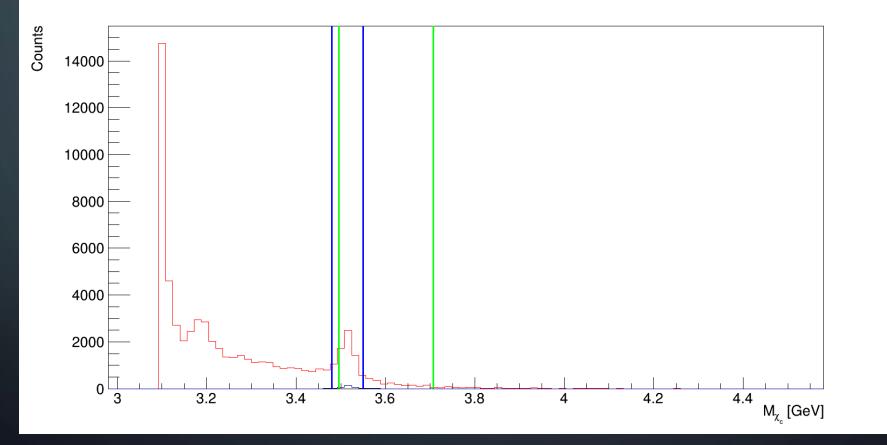

- Red simulated signal event
- Blue FTM simulated signal event
- Blue line cuts placed by hand
- Green line cuts placed by genetic algorythm


PION MASS CONSTRAINT FIT

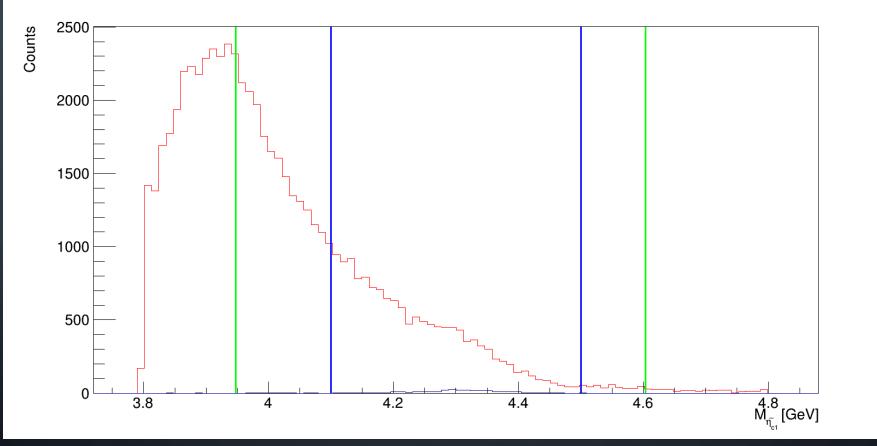


ETA MASS CONSTRAINT FIT

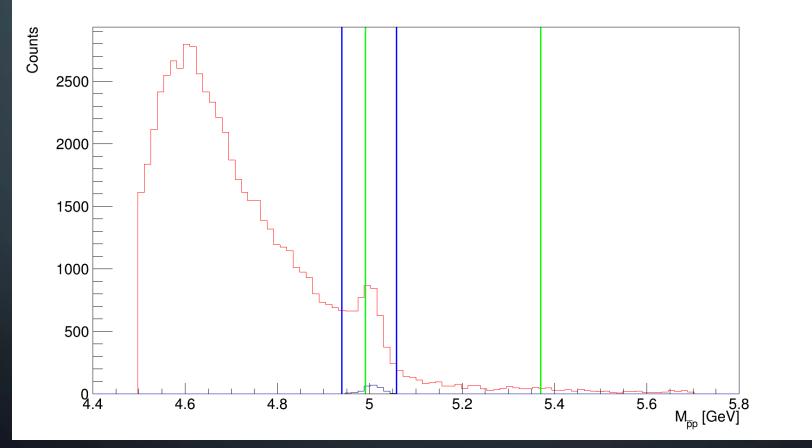


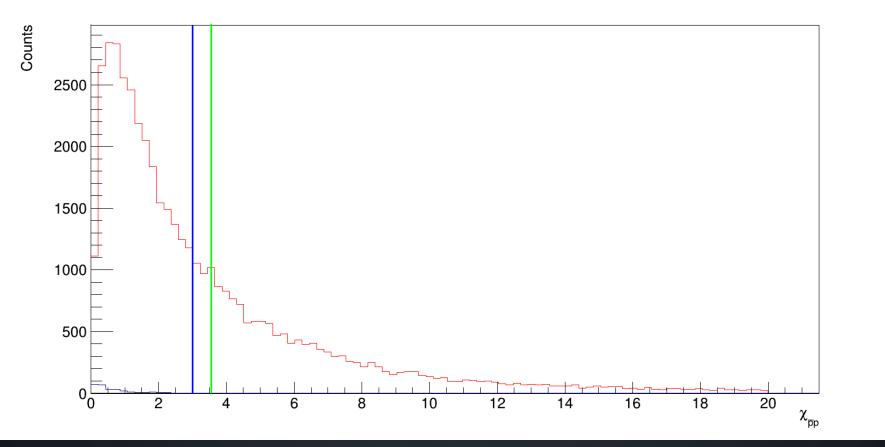


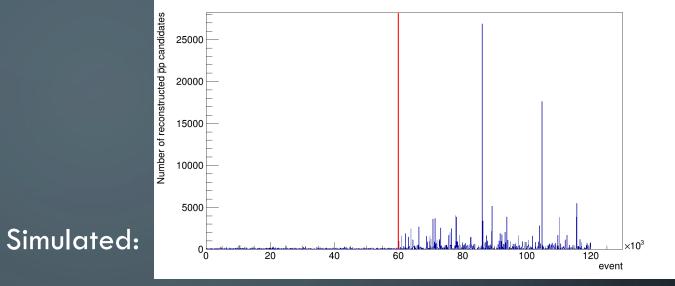
J/PSI MASS CONSTRAINT FIT

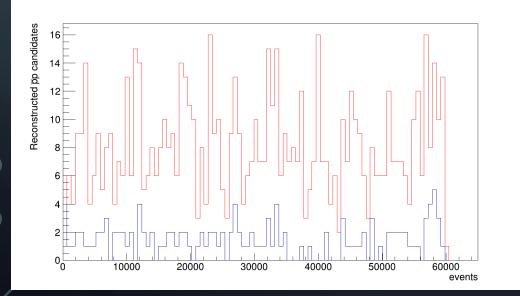


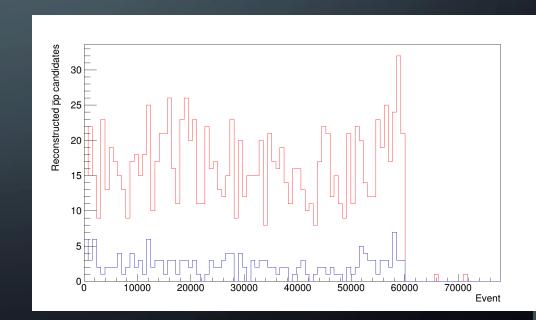
CHIC1 MASS






С




EFFECT OF THE CUTS

Genetic:

Hand:

MUCH MORE BACKGROUND EVENTS

- The genetic algorithm seems to work so far
- But what if we simulate much more background events 3 10⁸

Hand	Genetic
0.00326	0.000329

• Running the genetic algorithm on this much bigger dataset

MISSING RESONANCES

- Investigate, what happened to the 55000 not detected resonance
- Almost all leptons were detected -> the problem is with the photons
- How to find the missing photons?
 - Compare the generated tracks 'theAnalysis->FillList(mctruth, "McTruth");' with the reconstructed ones '(PndEmcHit->GetMcList();)'
 - Check if a track entered a sensitive detector 'PndMCTrack->GetNPoints(kEMC);'
 - Compare the generated distributions of the detected and non-detected photons (E, p, theta, phi, ...) there is no difference between them

SENSITIVE DETECTOR HIT

- Percent of the primary gamma tracks which created a signal in a sensitive detector part
 Percent of gammas detected in DRC: 36.2148
- If a pair production is allowed 63% is detected in the EMC
- This means, that all photons were detected approx. in 2400/60000 events

Percent of gammas detected in DRC: 36.2148 Percent of gammas detected in MDT: 0.0216667 Percent of gammas detected in MVD: 0.307857 Percent of gammas detected in RICH: 0 Percent of gammas detected in EMC: 61.9819 Percent of gammas detected in STT: 0.344048 Percent of gammas detected in FTOF: 0.0942857 Percent of gammas detected in TOF: 0.410952 Percent of gammas detected in GEM: 0.392143 Percent of gammas detected in DSK: 0.517381 Percent of gammas detected in HYP: 0 Percent of gammas detected in RPC: 0 Percent of gammas detected in LUMI: 0 Percent of gammas detected in HYPG: 0

CREATED HITS

tracks

• Number of events when a hit is created from a gamma or any of its daughter

hhit hhit 16000 60000 Entries Mean 4.458 14000 Std Dev 1.401 12000 10000 8000 6000 4000 2000 з g 10

CLUSTERS

- After the clustering this 4000 is reduced
- A comparison between the 2 clustering algorithms:
 - MC number of the clusters which have a contribution from the gamma

Q aron@aron-OptiPlex-7060: ~/pandaroot2_run137/tutorials/thailan 升 Ξ _ □ ×	Q aron@aron-OptiPlex-7060: ~/pandaroot2_run42/tutorials/thailand , , , , , , , , , , , , , , , , , ,
Gamma 10: New	Gamma 10:
Clusters :	Clusters :
evt 99	evt 99
[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.	[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.
Gamma 14:	Gamma 14:
Clusters :	Clusters :15 ,
[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.	[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.
Gamma 15:	Gamma 15:
Clusters :15 ,	Clusters :15 ,
[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.	[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.
Gamma 6:	Gamma 6:
Clusters :	Clusters :
[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.	[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.
Gamma 7:	Gamma 7:
Clusters :7 ,	Clusters :7 ,
[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.	[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.
Gamma 8:	Gamma 8:
Clusters :	Clusters :15 ,
[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.	[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.
Gamma 9:	Gamma 9:
Clusters :	Clusters :
[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.	[INFO] FairRunAna::Run() After checking, the run will run from event 99 to 100.
Gamma 10:	Gamma 10:
Clusters :10 ,	Clusters :10 ,661 ,593_,761 ,

SUMMARY

- The signal-background ratio is very small challanging channel
- Using the new clustering algorythm mayor improvement for this channel
- Using genetic algorythm to optimize the cuts
 - Should be checked by a simpler channel
- The photon reconstruction is poor
 - Trying to find the reason
 - We didn't find it yet