

Mass = 3525.38 \pm 0.11 MeV, Width = 0.7 \pm 0.4 MeV

$$rac{h_c o \gamma \eta}{h_c o hadrons} \sim 1$$

Not much information about $h_c \rightarrow hadrons$ channels:

•
$$h_c \to \pi^+ \pi^- \pi^0 < 2.2 \cdot 10^{-3}$$

•
$$h_c \rightarrow 2(\pi^+\pi^-)\pi^0 \ (2.2^{+0.8}_{-0.7}) \ \%$$

•
$$h_c \to 3(\pi^+\pi^-)\pi^0 < 2.9 \%$$

 $p\bar{p} \rightarrow 2(\pi^+\pi^-)\pi^0$ highest inelastic channel for $p\bar{p}$

- + high statistic
- significant background

PHSP Model

•
$$p\bar{p} \rightarrow h_c \rightarrow 2(\pi^+\pi^-)\pi^0$$
 with PHSP

Doesn't have a signature \Rightarrow model is needed!

$\omega\eta$ Model

•
$$p\bar{p} \rightarrow h_c \rightarrow V_{ector} + P_{seudoscalar}$$

 $h_c \rightarrow \omega \eta \text{ (PHSP, 100%)}$
 $\omega \rightarrow \pi^+ \pi^- \text{ (PHSP, 100%)}$
 $\eta \rightarrow \pi^+ \pi^- \pi^0 \text{ (PHSP, 100%)}$

- $\star\,$ FastSim (full and reduced) set-up
- $\star P_{beam} = 5.61 \text{ GeV/c}$

Background estimation $p\bar{p} \rightarrow 2(\pi^+\pi^-)\pi^0$ with DPM

•
$$\sigma_{sig} \sim 10-50 \text{ nb}$$
 \Rightarrow signal/bkg $\sim 10^{-5}-10^{-4}$
• $\sigma_{bkg} \sim 1 \text{ mb}$ e.g for 10⁴ signal events $\rightarrow 10^9$ DPM filtered events

•
$$\sigma_{sig} \sim 10\text{-}100 \text{ nb} \Rightarrow \text{signal/bkg} \sim 2 \cdot 10^{-7} \cdot 2 \cdot 10^{-6}$$

• $\sigma_{inel}^{tot} \sim 50 \text{ mb} \qquad \text{e.g for } 10^4 \text{ signal events} \rightarrow 5 \cdot 10^{10} \text{ DPM events}$

DPM inelastic

- \star contains $2(\pi^+\pi^-)\pi^0$ final state
- * adds background due to misidentification (e.g $\pi^+\pi^-K^+K^-\pi^0$)

Due to lack of time only supression power was checked $(2.10^7 \text{ simulated events})$

Reconstruction efficiency Finale state particles

$$\pi^0 o \gamma \gamma$$

• π^0 mass window cut (±50 MeV)

•
$$N_{\pi^0} = 1$$
, $N_{\pi^+} = 2$, $N_{\pi^-} = 2$

$$h_c \rightarrow 2(\pi^+\pi^-)\pi^0$$

$\omega\eta$ analysis model:

• $\omega \rightarrow \pi^+ \pi^- \rightarrow p_{\perp}(p_z)$ check

•
$$\eta \rightarrow \pi^+ \pi^- \pi^0 \rightarrow p_\perp(p_z)$$
 check

• if both OK for diff $\pi^+\pi^-$ pairs $\rightarrow \omega$ and η mass cuts

4C fit \rightarrow cut on χ^2

Event selection $p_{\perp}(p_z)$ [Peyrou]

ω (left) and η (right)

Reconstructed h_c mass

Reconstruction efficiency

Signal (NB: efficiency ~ 10% higher if $PionLoosePlus \rightarrow PionAllPlus$)

FwdSpec = complete Forward Spectrometer (Fwd Spec. EMC, Fwd Tracking, RICH, Fwd MUO)
EmcBarrel = EMC barrel for calorimetry (neutral detection and PID component)
Drc = Barrel DIRC for PID, Dsc = Disc DIRC for PID
MvdGem = MVD and GEM for central tracking in addition to STT

Reconstruction efficiency Background

FwdSpec = complete Forward Spectrometer (Fwd Spec. EMC, Fwd Tracking, RICH, Fwd MUO)
 EmcBarrel = EMC barrel for calorimetry (neutral detection and PID component)
 Drc = Barrel DIRC for PID, Dsc = Disc DIRC for PID
 MvdGem = MVD and GEM for central tracking in addition to STT

Charmonium group meeting, 16 May 2014

Significance(t) = $\sqrt{L \cdot t} \frac{\sigma_{s} \cdot \epsilon_{s} \cdot f_{BR}}{\sqrt{\sigma_{s} \cdot \epsilon_{s} \cdot f_{BR} + \sigma_{b} \cdot \epsilon_{b}}}$

- σ_s signal cross-section (10-100 nb)
- σ_b bkg cross-section (50 mb)
- f_{BR} BR factor for given decay (2%)
 - L luminosity (2.10³²)

"input":

 ϵ_s – rec. efficiency for signal (35%) ϵ_b – rec. efficiency for bkg (4·10⁻⁶)

Significance(t) = $\sqrt{L \cdot t} \frac{\sigma_{s} \cdot \epsilon_{s} \cdot f_{BR}}{\sqrt{\sigma_{s} \cdot \epsilon_{s} \cdot f_{BR} + \sigma_{b} \cdot \epsilon_{b}}}$

Results

$$p\bar{p} \rightarrow h_c \rightarrow 2(\pi^+\pi^-)\pi^0 (P_{beam} = 5.61 \text{ GeV/c})$$

- with PHSP and $VP(\omega\eta)$ model
- ϵ_{sig} ~ 35 %
- background suppression 4.10⁻⁶ achieved
- ~ 2-8 weeks needed to achieved 5 significance ($\sigma_{\!s}\!=\!20\text{--}10$ nb, $L\!=\!2\text{--}10^{32}~cm^{-2}s^{-1})$
- different detector set-up scenarios checked
 - \rightarrow without EmcBarrel or MvdGem ϵ_{sig} ~ 5 %

Outlook

- accurate significance calculation for different scenarios
- ? Scan "'measurement"

(more points, at least for background)

Simulation approach details

- \star standard decay and particles files in EvtGen
- * Only width of h_c changed $0 \rightarrow 0.7$ MeV (default mass of h_c is 3.52593 GeV)
- noPhotos
- * standard FastSim (full and reduced) set-up
- * *MergeNeutralClusters()* switched on (more realistic π^0)
- * PionLoosePlus, PionLooseMinus ("PidChargedProbability")

$$\begin{split} P_{\textit{beam}} &= 5.61 \text{ GeV/c} \\ (E_{\textit{CM}} &= 3.52593 \text{ GeV} \rightarrow P_{\textit{beam}} = 5.60883 \text{ GeV/c in LAB}) \end{split}$$

Event selection $N_{\pi^0}=1, N_{\pi^+}=2, N_{\pi^-}=2$

 $h_c \rightarrow 2(\pi^+\pi^-)\pi^0$

Efficiency loss due to diffirent final state < 2%

Event selection $p_{\perp}(p_z)$ [Peyrou]

Cut $p_{\perp}(p_z)$ for ω

Cut $p_{\perp}(p_z)$ for η

Ideas for background study $p\bar{p} \rightarrow 2(\pi^+\pi^-)\pi^0$ with DPM

• σ_{sig} ~10-100 nb

• $\sigma_{bkg} \sim 1 \text{ mb}$

 \Rightarrow signal/bkg ~ 10^{-5}

e.g for 10^4 signal events $\rightarrow 10^9$ DPM events

• DPM with filter on $2(\pi^+\pi^-)\pi^0$ final state

 $(\sigma_{inel}^{tot} \sim 50 \text{ mb} \Rightarrow \text{gain 50 times with filter, but takes some CPU time to filter interesting events})$

- ★ suppression with [close to] perfect PID
- \star check signal vs. bkg shape, angular distributions, etc
- DPM inelastic (done in this study)
 - * contains $2(\pi^+\pi^-)\pi^0$ final state
 - \star adds background channels due to misidentification (e.g $\pi^{+}\pi^{-}\mathrm{K}^{+}\mathrm{K}^{-}\pi^{0})$