Overview	Update

Status of $\overline{p}p \rightarrow \phi \phi \eta$ Analysis with FSIM

Malte Albrecht

Ruhr-Universität Bochum Institut für Experimentalphysik I

Charmonium and Exotics Meeting 16.05.2014

General Considerations

Overview

- Search for (heavy) glueballs in mass range $3-5~{\rm GeV}/c^2$
- Explore mass range in production, followed by detailed investigation in formation
- Assume glueball production cross section of 1 nb (guided by f0(1500) results from CB@LEAR)
- Glueball width could be small (assume 10 MeV)
- Main background channels (cross section about 1 mb each):
 - $\overline{p}p \rightarrow \pi^+\pi^-\pi^+\pi^-\eta$
 - $\overline{p}p \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0$
 - $\overline{p}p \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0\pi^0$
- Figure of Merit: Signal >100 events, S/N>1

Update

Overview ○●○	$\phi \phi \eta$ 0000	Update 0000
Overview		

- Decay channels to be analyzed:
 - $\overline{p}p
 ightarrow G\eta$, $\overline{p}p
 ightarrow G\pi^0$ with
 - $G \rightarrow \phi \phi$
 - $G
 ightarrow \omega \omega$
 - $G \rightarrow \eta' \eta'$
 - $G \rightarrow KK\pi^0$
- Started with $\phi\phi\eta$ / $\phi\phi\pi^0$ channel at $\textit{p}_{\overline{p}}=15\,\text{GeV}/\textit{c}$
- For comparison: Full simulation of this channel has been performed in 2008 with the BaBar-like analysis software (diploma thesis B.Roth)
- Using scrut14 release, revision #24893

Overview		Update
000	0000	0000

- Generated signal events w/o Glueball resonance: $\overline{p}p \rightarrow \phi\phi\eta \rightarrow K^+K^-K^+K^-\gamma\gamma$
- $\rightarrow~100.000$ events, PHSP
 - \bullet One of the main background channels: $\overline{p}p \to \pi^+\pi^-\pi^+\pi^-\eta$
- $\rightarrow\,$ Generated $2\cdot 10^7$ events (need 100 times more \rightarrow disk space problematic)
 - Choosing best candidate for each event:
- ightarrow candidate with minimal

 $r = \sqrt{(m(\phi_1) - m(\phi_{PDG}))^2 + (m(\phi_2) - m(\phi_{PDG}))^2}$ is selected to reduce combinatoric background

- Some struggles in the beginning, but now 4C kinematic fit works also with neutral particles in the final state
- ightarrow Cut on probability of 4C-Fit: Prob $(\chi^2,4)>$ 0.05)
 - So far using full detector setup and PidChargedProbability:KaonAllPlus/Minus

Mass spectra ($p_{\overline{p}} = 15 \text{ GeV}/c$, blue: 4C-Fit, black: unfitted)

Malte Albrecht (RUB EPI)

Overview 000	<i>φφη</i> ⊙●○○	Update

Dalitz Plot

Full simulation (diploma thesis B.Roth)

FastSim

 \rightarrow Homogeneous population of the dalitz plot also in FastSim

Malte Albrecht (RUB EPI) Status of Analysis

Update - 16.05.2014

Overview

- Generated 400M background events (π⁺π⁻π⁺π⁻π⁰) → still NO surviving event after 4C-fit (?!)
- Studied for 6 different detector options for:
 - Narrow Glueball resonance decaying to $\phi\phi$ with recoil π^0 , Glueball with $M = 3900 \text{ MeV}/c^2$, $\Gamma = 10 \text{ MeV}$ at $p_{\overline{p}} = 15 \text{ GeV}/c$ and 7.7 GeV/c
 - Non-resonant $\phi\phi\pi^0$ events at $p_{\overline{p}} = 2.4 \,\mathrm{GeV}/c$
- Require S = 100 for Glueball search, S = 1000 for spin-parity analysis
- Detector setups: 1=MvdGem, 2=EmcBarrel, 3=Drc, 4=Dsc, 5=FwdSpec

Update

Overview 000	Update ○●○○

 $M = 3900 \text{ MeV}/c^2$, $\Gamma = 10 \text{ MeV}$ Glueball at $p_{\overline{p}} = 15 \text{ GeV}/c^2$

Detector	ϵ_{S}	t(S = 100)	t(S = 100)	t(S = 100)
Setup	[%]	$L = 2 \cdot 10^3 2 \text{cm}^{-2} \text{s}^{-1}$	<i>L</i> /10	L/100
12345	36.7	3.3 hr	1.4 d	14 d
2345	4.3	28 hr	12 d	120 d
1 345	16.5	7.2 hr	3 d	30 d
12 45	36.5	3.3 hr	1.4 d	14 d
123 5	36.7	3.3 hr	1.4 d	14 d
1234	24.0	5.0 hr	2.1 d	21 d
Detector setups: 1=MvdGem, 2=EmcBarrel, 3=Drc, 4=Dsc,				
5=FwdSpec				

Overview 000	Update ○○●○

 $M = 3900 \text{ MeV}/c^2$, $\Gamma = 10 \text{ MeV}$ Glueball at $p_{\overline{p}} = 7.7 \text{ GeV}/c^2$

Detector	ϵ_{S}	t(S = 100)	t(S = 100)	t(S = 100)
Setup	[%]	$L = 2 \cdot 10^3 2 \text{cm}^{-2} \text{s}^{-1}$	<i>L</i> /10	L/100
12345	45.6	2.6 hr	1.1 d	11 d
2345	8.0	15.0 hr	6.25 d	62.5 d
1 345	1.3	92.3 hr	38.5 d	385 d
12 45	45.6	2.6 hr	1.1 d	11 d
123 5	45.6	2.6 hr	1.1 d	11 d
1234	33.0	3.6 hr	1.5 d	15 d
Detector setups: 1=MvdGem, 2=EmcBarrel, 3=Drc, 4=Dsc,				
5=FwdSpec				

Overview 000	$\phi\phi\eta$ 00000	Update ○○○●
Todo		

- Mass region for lighter glueball ($M \approx 2400 {\rm MeV}/c^2$) under investigation
- Background studies for minimum detector setup needed (!)
- \rightarrow PID not needed
 - For final report: study of at least one more decay channel $(G \to \eta' \eta')$ needed