Status of $\bar{p} p \rightarrow h_{c} \rightarrow \eta_{c}+\gamma$ analysis

D. Melnychuk, NCBJ Warsaw

09.05.2014

Reaction for study

$p \bar{p} \rightarrow h_{c} \rightarrow \eta_{c}+\gamma \rightarrow \phi \phi \gamma \rightarrow K^{+} K^{-} K^{+} K^{-} \gamma$
Decay mode of η_{c}

$$
\begin{aligned}
& \eta_{c} \rightarrow \phi \phi, B R=2.6 \cdot 10^{-3} \\
& \phi \rightarrow K^{+} K^{-}, B R=0.49
\end{aligned}
$$

Advantages of decay mode

- Narrow ϕ resonance ($\Gamma=4$ MeV) in the final state allows tight constraint on its invariant mass.
- Relatively low background due to the fact that $K^{+} K^{-} K^{+} K^{-}$final state have $4 s$ quarks.

Background channels

- $p \bar{p} \rightarrow K^{+} K^{-} K^{+} K^{-} \pi^{0}$
- $p \bar{p} \rightarrow K^{+} K^{-} \phi \pi^{0}$
- $p \bar{p} \rightarrow \phi \phi \pi^{0}$

Cross-section estimation

Signal cross-section

$$
\sigma_{p \bar{p} \rightarrow h_{c} \rightarrow \eta_{c}+\gamma}=40 n b(E 835)
$$

Background cross-section

Estimates done for Physics Book study. DPM event generator was used to estimate cross-section for background channels with 10^{7} generated events.

decay mode	N events	σ
$p \overline{\bar{p}} \rightarrow K^{+} K^{-} K^{+} K^{-} \pi^{0}$	60	360 nb
$p \bar{p} \rightarrow K^{+} K^{-} \phi \pi^{0}$	6	37 nb
$p \bar{p} \rightarrow \phi \phi \pi^{0}$	0	$<6 \mathrm{nb}$

Analised events:

- $20 \mathrm{k}-p \bar{p} \rightarrow h_{c} \rightarrow \phi \phi \gamma$
- $200 \mathrm{k}-p \bar{p} \rightarrow K^{+} K^{-} K^{+} K^{-} \pi^{0}$

Selection:

- 4C-fit to beam energy and momentum, CL> 0.05
- η_{c} post-fit selection [2.93:3.03] GeV
- $m(\phi)$ within [0.99;1.05] GeV
- Cut to implement: no π^{0} candidates in event
- Figure of merrit is the precision of width reconstruction, which depends on signal to background ratio. Studies for Physics Books demonstrated reasonable precison with $\mathrm{S} / \mathrm{B}=8$ and 200 reconstructed h_{c}.
- Efficiency in fast simulation-42\% (vs 24% for Physics Book study)
- Estimated event rate - 18 events/day at $L=2 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.
- Signal to backgraound ratio from one of the two most significant channels ($p \bar{p} \rightarrow K^{+} K^{-} K^{+} K^{-} \pi^{0}$) $>5: 1$.

D. Melnychuk, NCBJ Warsaw
h_{c} analysis status

Results (after 4C-fit)

- The split-off option was not used in fast simulation yet.
- No cut on no π^{0} used yet.
- No PID was used in analysis so far.

