Study of $p \bar{p} \rightarrow \chi_{c 1,2} \rightarrow J / \psi \gamma$

Elisa Fioravanti

INFN Ferrara

02th May 2014

$\chi_{c 1}$ and $\chi_{c 2}$ angular distributions

$$
\bar{p} p \rightarrow \chi_{1} \rightarrow J / \psi \gamma
$$

- Production amplitudes: $B_{0}=0$
- Decay Amplitudes: a_{2}

$$
a_{2}=0.002 \pm 0.032 \pm 0.004
$$

- θ is the polar angle of the J / ψ with respect to the antiproton in the $\bar{p} p$ center of mass system - θ^{\prime} is the polar angle of the positron in the J / ψ rest frame with respect to the J / ψ direction in the χ rest of mass system - ϕ^{\prime} is the azimuthal angle between the J / ψ decay plane and the χ_{c} plane

$$
\bar{p} p \rightarrow \chi_{2} \rightarrow J / \psi \gamma
$$

- Production amplitudes: B_{0}^{2}

$$
B_{0}^{2}=0.16_{-0.10}^{+0.09} \pm 0.01
$$

- Decay Amplitudes: a_{2}, a_{3}

$$
a_{2}=-0.076_{-0.050}^{+0.054} \pm 0.009
$$

$$
a_{3}=0.020_{-0.044}^{+0.055} \pm 0.009
$$

* E835 Collaboration, Nucl. Phys. B 717, 34 (2005)

$\bar{p} p \rightarrow \chi_{1,2} \rightarrow J / \psi \gamma \rightarrow \ell^{+} \ell^{-} \gamma$

Cross section

$$
\begin{gathered}
\sigma\left(\chi_{c 1} \rightarrow J / \psi \gamma\right) \sim 1.7 \text { nbarn } \\
\sigma\left(\chi_{c 2} \rightarrow J / \psi \gamma\right) \sim 2 \text { nbarn }
\end{gathered}
$$

E835 Collaboration, Nucl. Phys. B 717, 34 (2005)
Background: $\bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}: \sigma\left(\chi_{c 2}\right)=0.12 \mathrm{mb}$ CERN-HERA 70-03 (1970)

- Fast Simulation
- $J / \psi \rightarrow e^{+} e^{-} ; J / \psi \rightarrow \mu^{+} \mu^{-}$
- PID for Electrons: ElectronLoose
- PID for Muons: MuonLoose
- PID for Photons: Neutral
- MC Truth Match
- 10.000 events generated
- Decay model: $\chi_{c 1,2} \rightarrow J / \psi \gamma$: Chic1toJpsiGam
- Decay model: $J / \psi \rightarrow \ell^{+} \ell^{-}$: VLL

$\bar{p} p \rightarrow \chi_{c 1} \rightarrow J / \psi \gamma \rightarrow \ell^{+} \ell^{-} \gamma$

$$
\bar{p} p \rightarrow \chi_{c 1} \rightarrow J / \psi \gamma \rightarrow \ell^{+} \ell^{-} \gamma
$$

Invariant mass distributions for $J / \psi \rightarrow e^{+} e^{-}$

$\mathrm{e}^{+} \mathrm{e}^{\text {' }}$ Invariant mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right.$)

$$
J / \psi \rightarrow e^{+} e^{-}
$$

- Mean $=3.095 \mathrm{GeV}$
- Sigma $=45.4 \mathrm{MeV}$
- Eff $=68.8 \%$
$\mathrm{J} / \psi \gamma\left(\mathrm{e}^{+} \mathrm{e}\right)$ Invariant mass ($\mathrm{GeV} / \mathrm{c}^{2}$)

$$
\chi_{c 1} \rightarrow J / \psi \gamma
$$

- Mean $=3.509 \mathrm{GeV}$
- Sigma $=46.9 \mathrm{MeV}$
- Eff $=68.6 \%$

Invariant mass distributions for $J / \psi \rightarrow \mu^{+} \mu^{-}$

$\mu^{*} \mu^{*}$ Invariant mass $\left(\mathbf{G e V} / \mathrm{c}^{2}{ }^{2}\right)$

$$
J / \psi \rightarrow \mu^{+} \mu^{-}
$$

- Mean $=3.097 \mathrm{GeV}$
- Sigma $=45.1 \mathrm{MeV}$
- Eff $=60.0 \%$
$\mathrm{J} / \psi \gamma\left(\mu^{+} \mu^{*}\right)$ Invariant mass $\left(\mathbf{G e V} / \mathrm{c}^{2}\right)$

$$
\chi_{c 1} \rightarrow J / \psi \gamma
$$

- Mean $=3.510 \mathrm{GeV}$
- Sigma $=46.8 \mathrm{MeV}$
- Eff $=59.9 \%$

Angular distributions for $J / \psi \rightarrow e^{+} e^{-}$

The angles distributions corrected with the efficiency, which is presented in the lower part of the plot.

$$
W(\cos \theta)=1-\frac{1}{3} \cos ^{2} \theta
$$

$W\left(\cos \theta^{\prime}\right)=1-\frac{1}{3} \cos ^{2} \theta^{\prime}$

$$
W(\phi)=\text { flat }
$$

Angular distributions for $J / \psi \rightarrow \mu^{+} \mu^{-}$

The angles distributions corrected with the efficiency, which is presented in the lower part of the plot.

$$
W(\cos \theta)=1-\frac{1}{3} \cos ^{2} \theta
$$

$$
W\left(\cos \theta^{\prime}\right)=1-\frac{1}{3} \cos ^{2} \theta^{\prime}
$$

$$
W\left(\phi^{\prime}\right)=\text { flat }
$$

$\bar{p} p \rightarrow \chi_{c 2} \rightarrow J / \psi \gamma \rightarrow \ell^{+} \ell^{-} \gamma$

$$
\bar{p} p \rightarrow \chi_{c 2} \rightarrow J / \psi \gamma \rightarrow \ell^{+} \ell^{-} \gamma
$$

Invariant mass distributions for $J / \psi \rightarrow e^{+} e^{-}$

$\mathrm{e}^{+} \mathrm{e}^{-}$Invariant mass ($\mathrm{GeV} / \mathrm{c}{ }^{2}$)

$$
J / \psi \rightarrow e^{+} e^{-}
$$

- Mean $=3.096 \mathrm{GeV}$
- Sigma $=45.1 \mathrm{MeV}$
- Eff $=68.2 \%$
$\mathrm{J} / \psi \gamma\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)$Invariant mass $\left(\mathrm{GeV} / \mathrm{c}^{2}{ }^{2}\right)$

$$
\chi_{c 2} \rightarrow J / \psi \gamma
$$

- Mean $=3.556 \mathrm{GeV}$
- Sigma $=46.5 \mathrm{MeV}$
- Eff $=68.1 \%$

Invariant mass distributions for $J / \psi \rightarrow \mu^{+} \mu^{-}$

$\mu^{+} \mu^{-}$Invariant mass ($\mathbf{G e V} / \mathbf{c}^{2}$)

$$
J / \psi \rightarrow \mu^{+} \mu^{-}
$$

- Mean $=3.096 \mathrm{GeV}$
- Sigma $=44.43 \mathrm{MeV}$
- Eff $=59.9 \%$

$\mathrm{J} / \psi \gamma\left(\mu^{+} \mu^{*}\right)$ Invariant mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

$$
\chi_{c 2} \rightarrow J / \psi \gamma
$$

- Mean $=3.555 \mathrm{GeV}$
- Sigma $=46.10 \mathrm{MeV}$
- Eff $=59.8 \%$

Angular distributions for $J / \psi \rightarrow e^{+} e^{-}$

The angles distributions corrected with the efficiency, which is presented in the lower part of the plot.

$$
W(\cos \theta)=1-\frac{1}{3} \cos ^{2} \theta
$$

$$
W\left(\cos \theta^{\prime}\right)=1+\frac{1}{13} \cos ^{2} \theta^{\prime}
$$

$$
W\left(\phi^{\prime}\right)=1-\frac{8}{71} \cos \left(2 \phi^{\prime}\right)
$$

Angular distributions for $J / \psi \rightarrow \mu^{+} \mu^{-}$

The angles distributions corrected with the efficiency, which is presented in the lower part of the plot.

$$
W(\cos \theta)=1-\frac{1}{3} \cos ^{2} \theta
$$

$$
W\left(\cos \theta^{\prime}\right)=1+\frac{1}{13} \cos ^{2} \theta^{\prime}
$$

$$
W\left(\phi^{\prime}\right)=1-\frac{8}{71} \cos \left(2 \phi^{\prime}\right)
$$

BACK-UP SLIDES

Radiative transitions of the $\chi_{c J}$ charmonium states

The measurement of the angular distributions in the radiative decays of the χ_{c} states provides the multipole structure of the radiative decay and the properties of the $\bar{c} c$ bound state.

$$
\bar{p} p \rightarrow \chi_{c} \rightarrow J / \psi \gamma \rightarrow e^{+} e^{-} \gamma
$$

dominated by the dipole term E1.
M2 and E3 terms arise in the relativistic treatment of the interaction between the electromagnetic field and the quarkonium system. They contribute to the radiative width at the few percent level.
The angular distribution of the χ_{1} and χ_{2} are described by 4 indipendent parameters:

$$
a_{2}\left(\chi_{c 1}\right), a_{2}\left(\chi_{c 2}\right), B_{0}^{2}\left(\chi_{c 2}\right), a_{3}\left(\chi_{c 2}\right)
$$

Angular distribution of the $\chi_{c J}$ states

- The coupling between the set of χ states and $\bar{p} p$ is described by four indipendent helicity amplitudes:
- χ_{0} is formed only through the helicity 0 channel
- χ_{1} is formed only through the helicity 1 channel
- χ_{2} can couple to both
- The fractional electric octupole amplitude, $a_{3} \approx E 3 / E 1$, can contribute only to the χ_{2} decays, and is predicted to vanish in the single quark radiation model if the J / ψ is pure S wave.
- For the fractional M2 amplitude a relativistic calculation yields:

$$
\begin{gathered}
a_{2}\left(\chi_{c 1}\right)=-\frac{E_{\gamma}}{4 m_{c}}\left(1+\kappa_{c}\right)=-0.065\left(1+\kappa_{c}\right) \\
a_{2}\left(\chi_{c 2}\right)=-\frac{3}{\sqrt{5}} \frac{E_{\gamma}}{4 m_{c}}\left(1+\kappa_{c}\right)=-0.096\left(1+\kappa_{c}\right)
\end{gathered}
$$

where κ_{c} is the anomalous magnetic moment of the c-quark

$\chi_{c 1}$ and $\chi_{c 2}$ angular distributions

$$
\left(\frac{a_{2}\left(\chi_{1}\right)}{a_{2}\left(\chi_{2}\right)}\right)_{T h}=\frac{\sqrt{5}}{3} \frac{E_{\gamma}\left(\chi_{1} \rightarrow J / \psi \gamma\right)}{E_{\gamma}\left(\chi_{2} \rightarrow J / \psi \gamma\right)}=0.676
$$

McClary and Byers (1983) predict that ratio is indipendent of c-quark mass and anomalouse magnetic moment

E835 have been measured for the first time this ratio:

$$
\left(\frac{a_{2}\left(\chi_{1}\right)}{a_{2}\left(\chi_{2}\right)}\right)_{E 835}=-0.02 \pm 0.34
$$

Experimental result is $\sim 2 \sigma$ away from prediction.

High statistics measurements of these angular distributions are needed to solve this question

E835 Reference "Ambrogiani et al. Physical Review D, Vol. 65, 05002"

