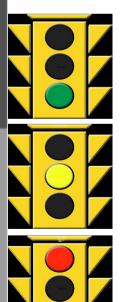


XYZ states @ PANDA

Summary on behalf of A. Blinov, M. Galuska, S. Lange, E. Prencipe, S. Spataro

July 1th, 2015 | Elisabetta Prencipe, Forschungszentrum Jülich | Discussion on XYZ states


Preface

Goals of this talk:

- Discussion on the X(3872)
- Discussion on the Y(4260)
- Show extrapolations on Z(3900), from Y(4260)

Markers:

Approved, reviewed, published

Approved, reviewed, published, and extrapolated to different luminosity

Not approved, under discussion during this meeting

Introduction

- Approved results on X(3872) and Y(4260) are shown
- Formulas on how calculations are preformed
- New ideas how to look for Z states are explained
- Discussion on future plans

X(3872)

- QWG 2011. Martin's work is shown (pandaroot rev-8466)
- > 20 proceedings written and published since 2011, in PANDA (EPJ, Nucl. Phys. B proc. of conf. Pos-Sissa,..)
- Official reference to refer to:
 - M. Galuska et al., PoS (Bormio 2012) 018.
- No release note exists, because it is a work done 4 years ago.
 Informations are taken from the conference proceedings

Simulation Results for a Resonance Scan of the X(3872) at PANDA *

8th International Workshop on Heavy Quarkonium 2011, GSI Darmstadt

Martin J. Galuska[†], Svende A. Braun, Wolfgang Kühn, J. Sören Lange and Björn Spruck for the PANDA Collaboration

II. Physikalisches Institut, JLU Gießen

October, 5th 2011

Slides 4-12: Courtesy of M. Galuska from QWG2011

^{*}This work was supported in part by BMBF (06GI9107I) and HICforFAIR.

[†]Martin.J.Galuska@physik.uni-giessen.de

itglied in der Helmholtz-Gemeinschaf

Input Parameters for Simulation of X(3872) Resonance Scan at PANDA

Mass $m_{X(3872)}$

Width $\Gamma_{X(3872)}$

Production

Decay

Subsequent Decay

Time Requirement

Accelerator duty factor

Luminosity

HESR

p_{beam} distribution

 \sqrt{s} distribution

3.872 GeV

100 keV

 $p\overline{p} \rightarrow X(3872) (\sigma_{BW} = 50 \text{ nb})^*$

 $X(3872) \rightarrow J/\psi \pi^{+}\pi^{-} (BR = 0.1)$

 $J/\psi \to e^+e^- (BR = 0.06)^{\dagger}$

20 · 2 days

50%

 $0.864 \text{ pb}^{-1}/\text{day}$

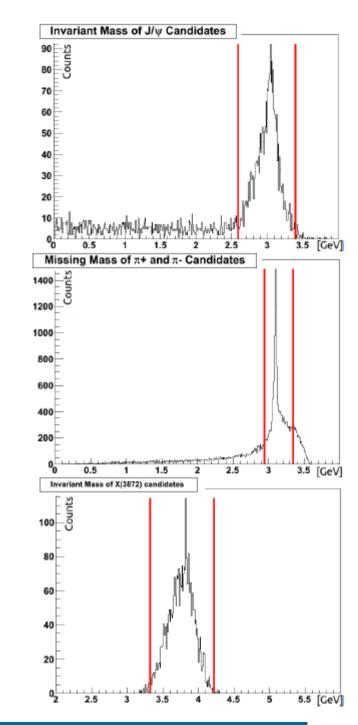
High resolution mode

Gaussian, rms $\simeq 2 \cdot 10^{-5} \cdot p_{\text{beam}}$

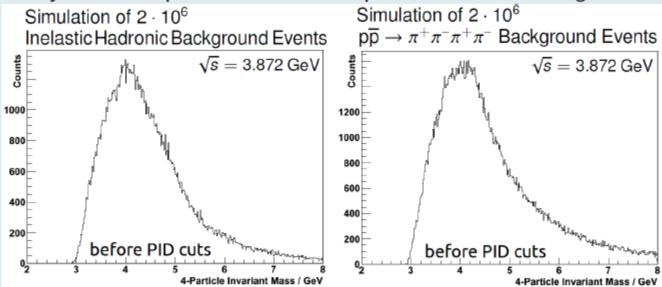
Gaussian, rms ≈ 33.6 keV

^{*}Corresponds to: BR(X(3872) \rightarrow p \overline{p}) $\simeq 3.9 \cdot 10^{-5}$

[†]K. Nakamura et al. (PDG) J. Phys. G37, 075021 (2010)



Reconstruction Procedure

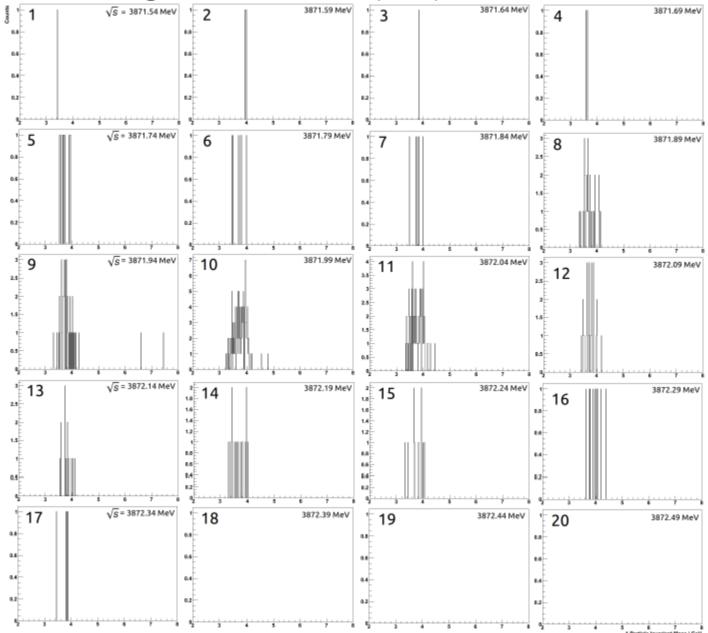

- Apply PID cuts.
- Cut on invariant mass of all e⁺e⁻ candidates.
 - $\rightarrow J/\psi$ candidates.
- **3** Cut on missing mass of all $\pi^+\pi^$ candidates.
- Out on invariant mass of $e^+e^-\pi^+\pi^$ candidates.
 - → X(3872) candidates.
 - → Signal counts for scan point.

Plots are shown for simulation of $p\overline{p} \rightarrow X(3872)$ signal events at $\sqrt{s} = 3.872$ GeV with subsequent X(3872) $\rightarrow J/\psi \pi^+\pi^$ and $J/\psi \rightarrow e^+e^-$ decays.

Study of Background Processes

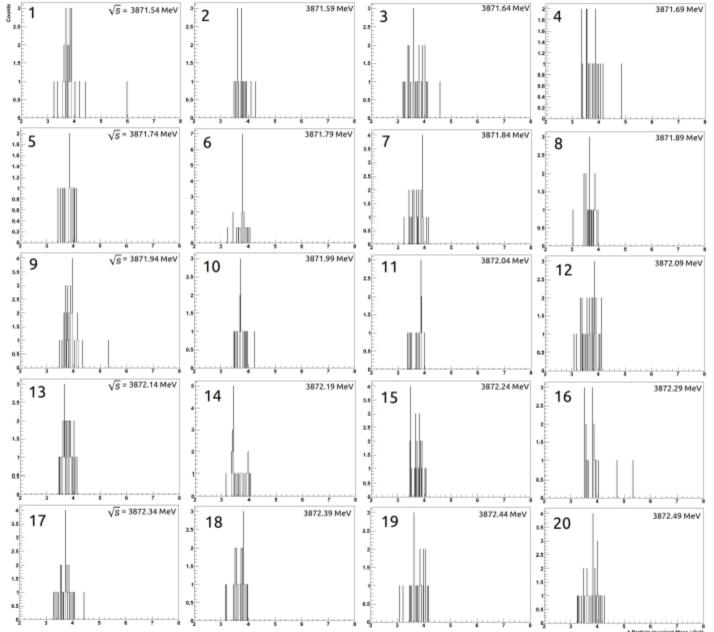
- Direct process $\sigma(p\overline{p} \to J/\psi \pi^+\pi^-) = 1.2 \text{ nb}^* \text{ for } \sqrt{s} \simeq m_{X(3872)}$.
- All other processes assumed to be suppressible with PID
 - $\sigma_{\text{inelastic}} \simeq 45 \text{ mb}^{\dagger}$
 - $\sigma(p\overline{p} \to \pi^+\pi^-\pi^+\pi^-) \simeq 50 \ \mu b^{\ddagger}$
 - Study of events produced with dual parton model based generator[⊥]

- After PID cuts: No fake signals observed.
- Investigation of larger sample sizes will follow.

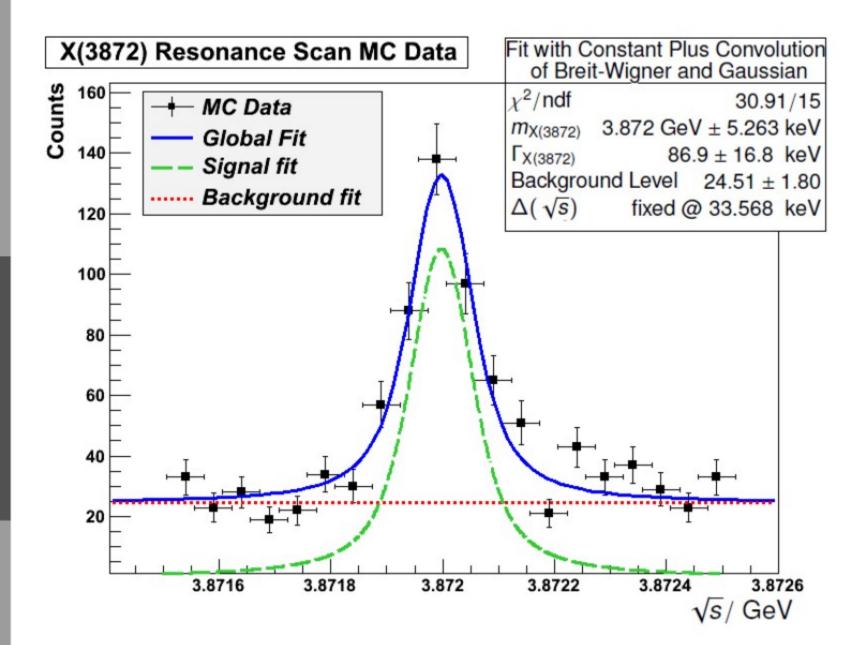

^{*} G. Y. Chen, J. P. Ma, Phys. Rev. D77(2008)097501

[†] K. Nakamura et al. (PDG) J. Phys. G37, 075021 (2010)

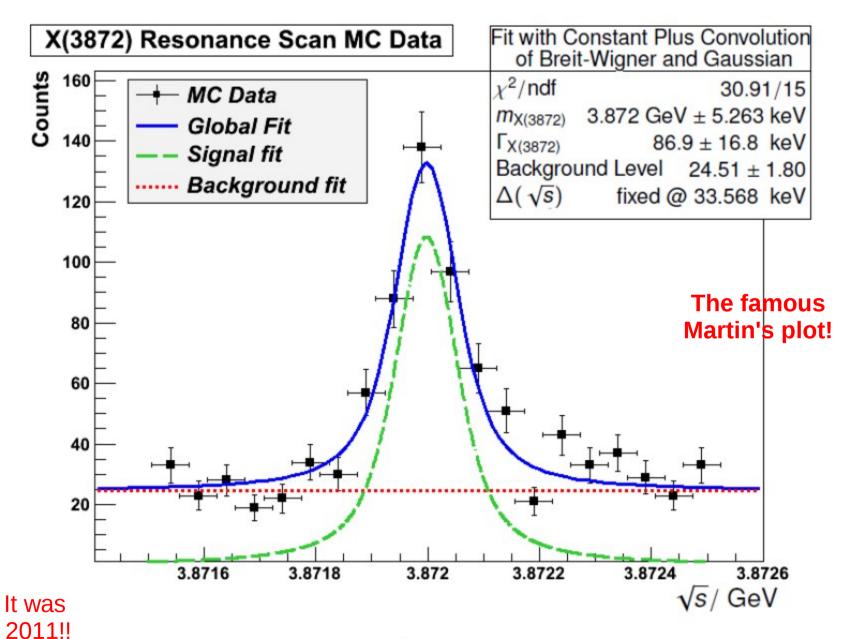
[‡] V. Flaminio et al. (Compilation of Cross-Sections) CERN-HERA-79-03 (1979)


[⊥] V. Uzhinsky, A. Galoyan, hep-ph/0212369

Signal Simulation for X(3872) Resonance Scan

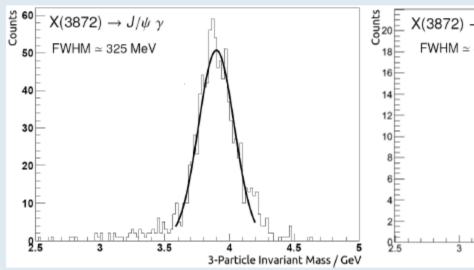


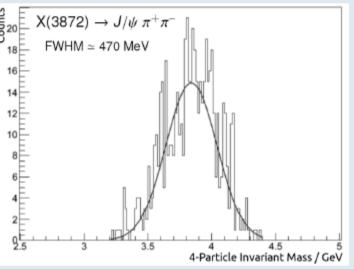
Background Simulation for X(3872) Resonance Scan



Reconstructed width $\Gamma_{X(3872)}$ is consistent with input width of 100 keV.*

^{*}Results are preliminary. Only statistical errors are shown.


Reconstructed width $\Gamma_{X(3872)}$ is consistent with input width of 100 keV.*


^{*}Results are preliminary. Only statistical errors are shown.

fitalied in der Helmholtz-Gemeinscha

Comparison of X(3872) $\rightarrow J/\psi \ \gamma$ and X(3872) $\rightarrow J/\psi \ \pi^+\pi^-$

- 9 · BR(X(3872) $\to J/\psi \gamma$) \simeq BR(X(3872) $\to J/\psi \pi^+\pi^-$)*
- Efficiency before PID: $\varepsilon(J/\psi \gamma) \simeq \varepsilon_{\text{track}}^2 \cdot \varepsilon_{\gamma} \leftrightarrow \varepsilon(J/\psi \pi^+\pi^-) \simeq \varepsilon_{\text{track}}^4$

- Main background: $p\overline{p} \to \pi^+\pi^-\pi^0$ ($\sigma \simeq 70~\mu b^\dagger$) with misidentified π^\pm and one γ from $\pi^0 \to \gamma\gamma$ lost in beampipe.
- Background analysis will show whether $X(3872) \rightarrow J/\psi \gamma$ might be favorable for $\overline{P}ANDA$.
- Derived from product branching fractions of B-decays.
- [†] V. Flaminio et al. (Compilation of Cross-Sections) CERN-HERA-79-03 (1979)

...more on the X(3872) in PANDA:

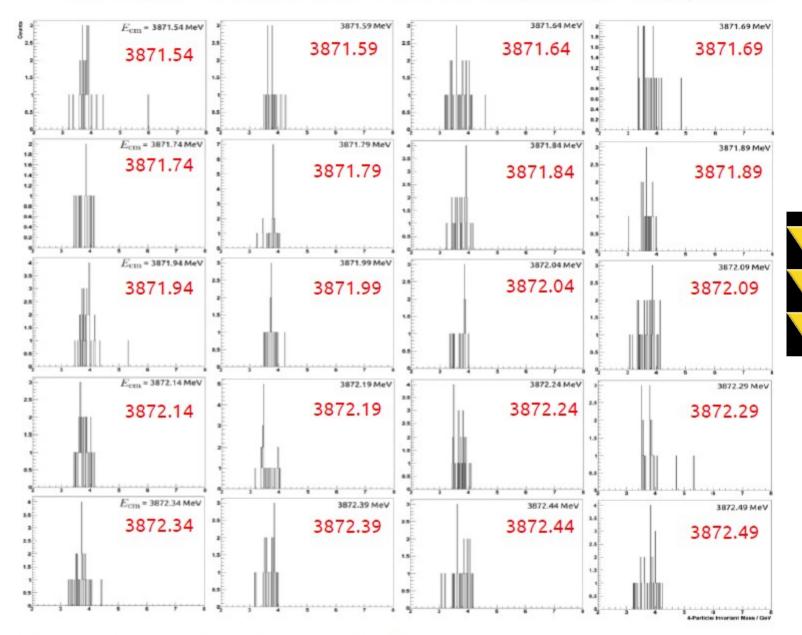
S. Lange et al., arXiV:1311.7597 (2013) [hep-ex]

- Proceedings of the CHARM2013 conference
- Reviewed by P. Gianotti, approved, and submitted (2013)
- No X(3872) simulation update

Slide 15-18; 21-23 from **CHARM2013**

Status and Plan of PANDA

New Studies of XYZ at PANDA


- S. Lange, M. Galuska, S. Reiter (University Giessen)
- E. Prencipe (FZ Jülich)
- S. Spataro (University and INFN Torino)

CHARM 2013, 08/31-09/04/2013, Manchester, UK on behalf of the PANDA collaboration

Example: Resonance Scan of X(3872) \rightarrow J/ ψ π + π -

tglied in der Helmholtz-Gemeinsch

How do we know cross sections @ PANDA? → Detailed balance

Production @ Panda

$$\sigma[p\overline{p} \to X(3872)] = \sigma_{BW}[p\overline{p} \to X(3872) \to \text{all}](m_{X(3872)})$$

$$= \underbrace{\frac{(2J+1)\cdot 4\pi}{m_{X(3872)}^2 - 4m_p^2} \cdot \underbrace{\frac{\mathcal{B}(X(3872) \to p\overline{p})\cdot \overbrace{\mathcal{B}(X(3872) \to f)} \cdot \Gamma_{X(3872)}^2}_{=0} + \Gamma_{X(3872)}^2}_{=0} + \underbrace{\Gamma_{X(3872)}^2 + \Gamma_{X(3872)}^2}_{=0}$$

$$\stackrel{(J=1)}{=} \frac{3 \cdot 4\pi}{m_{X(3872)}^2 - 4m_p^2} \cdot \mathcal{B}(X(3872) \to p\overline{p})$$

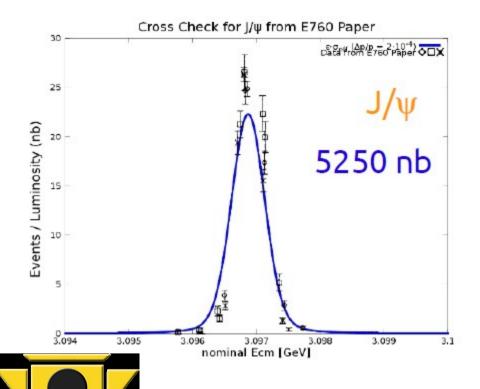
Decay

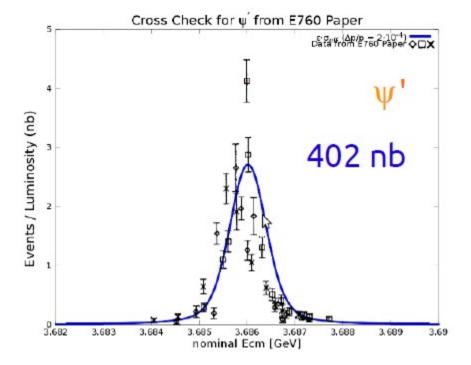
@ Belle, BaBar, Bes3, LHCb

litglied in der Helmholtz-Gemeinsch

Cross section estimates from detailed balance

Table: Peak cross sections $\sigma^{\text{peak}}_{[p\overline{p}\to R]}$ for $p\overline{p}\to R$ assuming Breit Wigner distributions with constant small width Γ_R .


Res. R	J	Mass m [MeV]	$\mathcal{B}(R \to p\overline{p})$	$\sigma^{\text{peak}}_{[p\overline{p}\to R]}$ ±err. fr. $\mathcal{B}(R\to p\overline{p})$ ± err. fr. m_R
J/ψ(1S)	1	3096.916 ± 0.011	$(2.17 \pm 0.07) \cdot 10^{-3}$	$5.25 \pm 0.17 \pm 0.00 \mu$ b
$\psi(2S)$	1	3686.109 ^{+0.012} _{-0.014}	$(2.76 \pm 0.12) \cdot 10^{-4}$	$402 \pm 18 \pm 4 \mathrm{nb}$
$\eta_c(1S)$	0	2981.0 ± 1.1	$(1.41 \pm 0.17) \cdot 10^{-3}$	$1.29 \pm 0.16 \pm 0.00 \mu$ b
$\eta_c(1S)$	0	2981.0 ± 1.1	$(1.32 \pm 0.19) \cdot 10^{-3}$	$1.21 \pm 0.17 \pm 0.00 \mu$ b
$\eta_c(2S)$	0	3638.9 ± 1.3	$(1.85 \pm 1.26) \cdot 10^{-4}$	$93 \pm 63 \pm 0 \text{ nb}$
$\eta_c(2S)$	0	3638.9 ± 1.3	$(3.12 \pm 1.65) \cdot 10^{-4}$	$< 157 \pm 83 \pm 0 \text{ nb} (95\% \text{ CL})$
$\chi_{c0}(1P)$	0	3414.75 ± 0.31	$(2.23 \pm 0.13) \cdot 10^{-4}$	$134.1 \pm 7.8 \pm 0 \mathrm{nb}$
$h_c(1P)$	1	3525.41 ± 0.16	$(8.95 \pm 5.21) \cdot 10^{-4}$	$1.47 \pm 0.86 \pm 0 \mu$ b
$h_c(1P)$	1	3525.41 ± 0.16	$(1.68 \pm 0.05) \cdot 10^{-3}$	$< 2776 \pm 87 \pm 0 \text{ nb} (95\% \text{ CL})$
X(3872)	1	3871.68 ± 0.17	$(5.31 \pm 0.00) \cdot 10^{-4}$	$< 68.0 \pm 4.0 \pm 0.0 \text{ nb} (95\% \text{ CL})$
X(3915)	?	3917.5 ± 2.7	$(27 \pm 10) \cdot 10^{-3}$	not isolated



from PDG from LHCb, arXiv:1303.7133 [hep-ex] from combination of both (product branching fractions)

Check of cross section, derived from detailed balance (blue line)

with direct measurement of J/ψ, ψ' E760, Phys. Rev. D47(1993)772 (data points)

How many X(3872) do we expect in $\overline{P}ANDA$?

$$N = L * \sigma * \epsilon * BR_i$$

L = luminosity

 σ = cross section

 ε = reco. efficiency

BR_i = branching fraction of secondary decays

tglied in der Helmholtz-Gemeinschaft

LUMINOSITY

Example of calculation with luminosity = 2 * 10 ³¹ cm⁻² s⁻¹

duty factor 50%

$$\mathcal{L}_{int} = \frac{\int \mathcal{L} \cdot \alpha \, dt}{1 \, day} = 2 \cdot 10^{31} \, cm^{-2} \cdot 1 \, s^{-1} \underbrace{\frac{1}{2} \cdot \frac{60 \, s}{1 \, min} \cdot \frac{60 \, min}{1 \, h} \cdot \frac{24 \, h}{1 \, day}}_{8.64 \cdot 10^{4} / day}$$

$$= 10^{31} \cdot (10^{-2})^{-2} \, m^{-2} \cdot \underbrace{\frac{60}{1} \cdot \frac{60}{1} \cdot \frac{24}{1 \, day}}_{8.64 \cdot 10^{4} / day}$$

$$= 8.64 \cdot 10^{39} \cdot \underbrace{\frac{10^{-12} \cdot 10^{-28}}{10^{-12} \cdot 10^{-28} \, m^{2}}}_{1 \, b=10^{-28} \, m^{2}} \text{ per day}$$

$$= 8.64 \cdot \underbrace{\frac{10^{-1}}{1 \, pb}}_{1 \, per \, day} = 0.864 \, pb^{-1} \, per \, day$$

<u>CROSS SECTION</u> → Detailed balance, see slide 17-18

• Question: how the BR(X(3872)) was evaluated?

2011: Σ_i BR_i(X(3872) \rightarrow known measured decay channels) = 10%

2014: \sum_{i} BR_i(X(3872) \rightarrow known measured decay channels) = 3% \div 8%

• In all approved PANDA talks/proceedings, BR = 0.1

• All tables and plots since 2011 until May 2015 are consistent with BR = 0.1

 \sim 700 X(3872) events/day in high luminosiy mode 70 events/day in high resolution mode

- In 2011 only the PANDA central tracker software was implemented.
- In 2015 we still do not have a realistic FTS implemented. Only ideal FTS.
- In 2015 the time-based simulation is work in progress.
- A duty factor 50% is always included in the PANDA calculations.
- <u>I am not aware of other X(3872) simulations ongoing and approved since 2011</u>.
- The numbers of the above published proceedings are the **official** X(3872) one Σ

Y(4260) and the Y-family

- Presented for the first time at CHARM2013
- Second talk with these informations at ICHEP2014
- Proceedings reviewed and submitted ⇒ approved
- No release note exists, because it is a work done in 2013-2014 (before PubCom rules apply)
- Informations are taken from the proceedings
- Official reference to refer to:

CHARM2013, S. Lange et al., arXiV:1311.7597

ICHEP2014, E. Prencipe et al., arXiv:1410.5201 (2014)

→Nuclear Physics B, proceedings of conferences

Cross section of Y(4260) at PANDA

from detailed balance

→ σ≤4370 nb

due to high upper limit

 $\mathcal{B}(Y(4260) \to pp) / \mathcal{B}(Y(4260) \to J/\psi\pi + \pi -) < 0.13 (90\% C.L.)$ BaBar, Phys. Rev. D73(2006)012005

Better approach: scaling $\mathcal{B}(Y(4260) \to \overline{p}p) = \mathcal{B}(J/\psi \to \overline{p}p) \times \frac{\Gamma(J/\psi)}{\Gamma(Y(4260))}$

 σ =1.9±0.2 nb (L=2 x 10³² cm⁻² s⁻¹, planned) PANDA is Y(4260) mini-"factory" → 16.400 events per 1 day

Comparison to BESIII

 σ =62.9±1.9±3.7 pb (\mathcal{L} =5.3 x 10³² cm⁻² s⁻¹, achieved)

Phys. Rev. Lett. 110, 252001 (2013)

Comparison to Belle II

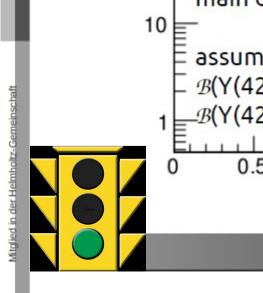
- Y(4260) in B decays never observed
- in ISR ≤30.000 events in 50 ab⁻¹ (≥8 years) assuming $\mathcal{B}(Y(4260) \to J/\psi\pi+\pi-)=100\%$

Mitglied in der Helmholtz-Geme

What can PANDA do?

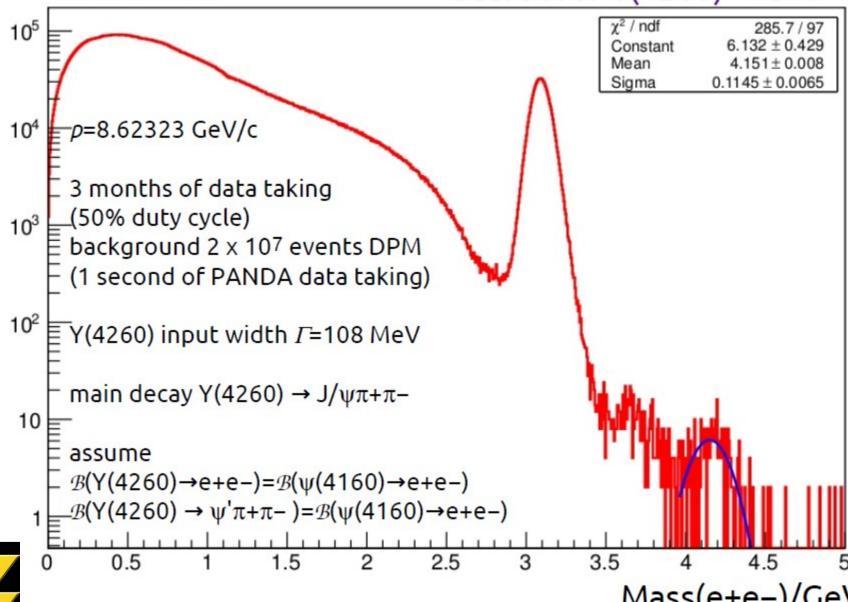
Search for rare decay Y(4260) → e+e-

Not observed yet, although JPC=1--


Limit from coupling to initial state $\mathcal{B}(J/\psi\pi+\pi-) \times \mathcal{B}(e+e-) = (7.5\pm0.9\pm0.8) \text{ eV}$ BaBar, arXiv:0808.1543

Partial width of the order "eV" of a state which is Γ ~100 MeV total width

 \rightarrow factor ≥10⁷ suppressed

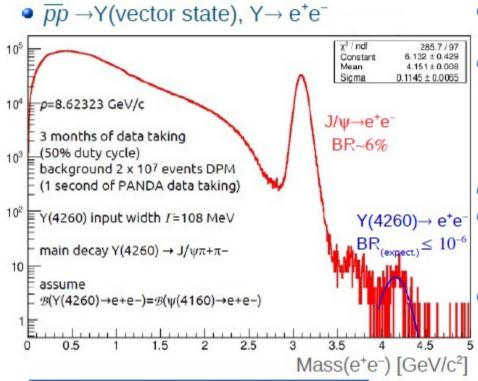

Test if annihilation (wavefunction at r=0) suppressed

- if $[c\overline{c}]_8g$ hybrid, minimum of hybrid potential Π_u not centered
 - → talk by E. Braaten, Saturday, 12:00
- enhanced long-range wavefunction, if $\overline{D}D_1(2420)$ molecule ?

PANDA preliminary

Search for $Y(4260) \rightarrow e+e-$

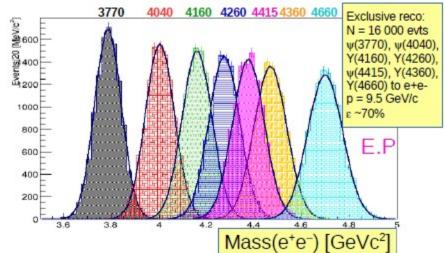
Mass(e+e-)/GeV



Status and Perspectives for PANDA @ FAIR

July 3rd, 2014 | Elisabetta Prencipe, Forschungszentrum Jülich (ICHEP 2014 – Valencia (Spain)

Challenge: interference effect in rare decays



PDG	BR(ψ→e⁺e⁻)	Γ/MeV
ψ(3770)	(9.6± 0.7)×10 ⁻⁶	27.2±1.0
ψ(4040)	(1.07± 0.16)×10 ⁻⁵	80±10
ψ(4160)	(8.1± 0.9)×10 ⁻⁶	103±8
ψ(4415)	(9.4± 3.2)×10 ⁻⁶	62±20

Pandaroot-scrut14

. Prencipe

- PANDA: mini-Y(4260) factory.
 Expected ~16000 Y/day (high lum. mode)
- Y(4260) \rightarrow e⁺e⁻ not observed, yet: limit from coupling to initial state $\mathcal{B}(J/\psi\pi^+\pi^-) \times \mathcal{B}(e^+e^-) = (9.2\pm0.8) \text{ eV}$ BaBar, PRD 86 (2012) 051102
- Overpopulated 1⁻ Charmonium spectrum
- In PANDA possibility to study very rare decays: Y(4260) →e⁺e⁻would be an absolute measurement
 - 1⁻ states are large: they can interfere

ICHEP Conference, 2-9 July .2014

arXiv:1410.5201 (2014)

Then, PANDA numbers published on Y(4260) are:

16400 Y(4260) events per day are expected in high luminosity mode

1640 Y(4260) events per day are expected in high resolution mode

We assume 100% total Y(4260) decay rate

Additional reference: Martin's talk @ Sept2013 Panda coll. meeting These are the approved and <u>published</u> Y(4260) numbers ⇒ **official**

PANDA is:

- mini-Y(4260) factory:
- 16400 prod. evt/day expected @ L = 2 x 10³²
- extrapolation @ $L = 10^{31}$: 820 Y(4260)/day
- BES III: Phys. Rev. Lett. 110 (2013) 252001
 Observation of a Charged Charmoniumlike Structure in e⁺e⁻ → π⁺π⁻J/ψ at s√=4.26 GeV

$$\frac{\sigma(e^{+}e^{-} \rightarrow \pi^{\pm}Z_{c}(3900)^{\mp} \rightarrow \pi^{+}\pi^{-}J/\psi)}{\sigma(e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}J/\psi)} = (21.5\pm3.3\pm7.5)\%$$

- mini-X(3872) factory:
- 432k prod. evt/day expected @ L = 2×10^{32}
- extrapolation @ L = 10³¹: 21600 X(3872)/day
- BES III: Phys. Rev. Lett. 112 (2014) 092001 Observation of $e^+e^- \rightarrow \gamma X(3872)$ at BESIII

Observed transition Y(4260) $\rightarrow \gamma$ X(3872)

$$\sigma(e^+e^- \rightarrow \gamma X(3872))B(X(3872 \rightarrow \pi\pi J/\psi)$$

 $< 0.11 \text{ pb } @ \sqrt{s} = 4.26 \text{ GeV}$

Use PANDA data set collected @ Y(4260) energy

Expectation in \overline{PANDA} @ L = 10^{31} :

- 1) 176 $Z_c(3900)/day$, $Z_c(3900) \rightarrow \pi J/\psi$
- 2) Study transition $X(3872) \rightarrow Z\pi$

How? 30

Table 1: Summary of the observed Z resonant structures

Resonance	$Mass [MeV/c^2]$	$\operatorname{Width} [\operatorname{MeV}]$	Decay	J^P
$Z(4430)^{+}$	$4433\pm4(stat)\pm2(syst)$	$45^{+18}_{-13}(\text{stat})^{+30}_{-13}(\text{syst})$	$\psi(2S)\pi^+$	[1]
$Z_c(3900)^+$	$3899.0 \pm 3.6 (stat) \pm 4.9 (syst)$	$46\pm10(\text{stat})\pm20(\text{syst})$	$J/\psi \pi^{+}, D^{0}D^{*-}$	[2]
$Z_c(3900)^0$	$3894.8 \pm 2.3 \text{(stat)}$	$29.6 \pm 8.2 (stat)$	$J/\psi\pi^0$	[3]
$Z_c(4020)^+$	$4022.9 \pm 0.8 (\text{stat}) \pm 2.7 (\text{syst})$	$7.9 \pm 2.7 (stat) \pm 2.6 (syst)$	$h_c\pi^+$	[4]
$Z_c(4020)^0$	$4023.6 \pm 2.2 (\text{stat}) \pm 3.9 (\text{syst})$	-	$h_c\pi^0$	[5]
$Z_c(3885)^+$	$3883.9 \pm 1.5 (\text{stat}) \pm 4.2 (\text{syst})$	$24.8 \pm 3.3 (stat) \pm 11.0 (syst)$	$D^+ \bar{D}^{*0}$	1+ [6]
$Z_c(4025)^+$	$4026.3 \pm 2.6 (\text{stat}) \pm 3.7 (\text{syst})$	$24.8 \pm 5.6 (stat) \pm 7.7 (syst)$	$D^{*+}\bar{D}^{*}$	[7]

[1] PRL 100(2008)142001; [2] PRL 110(2013)252001; [3] PLB 727(2013)366; [4] arXiV:1309.1806; [5] ICHEP2014; [6] PRL 112(2014)022001; [7] PRL 112(2014)132001.

- Reasonably expected Z states near DD threshold, never observed (m_z~ 3730 MeV/c²)
 X(3872)→ Z(3730)π transition kinematically allowed
 → suppressed at e⁺e⁻ colliders
- Proposal @ PANDA:

$$\bar{p}p \to Z(3730)^0 \pi^0$$
, $Z(3730)^0 \to J/\psi \gamma$,
 $\bar{p}p \to Z(3730)^0 \pi^0$, $Z(3730)^0 \to \chi_{c1} \pi^0$,
 $\bar{p}p \to Z(3730)^+ \pi^-$, $Z(3730)^+ \to \chi_{c1} \pi^+$, with $\chi_{c1} \to J/\psi \gamma$

How are calculations performed?


Table 2: Summary of the expected X, Y, and Z production rates per day in $\overline{P}ANDA$, assuming different detector luminosity ($\mathcal{L}/(cm^{-2} s^{-1})$). The calculation is performed by multiplying luminosity, cross section and a detector duty factor of 50%.

 Resonance	n. with $\mathcal{L}=2\times10^{32}$	n. with $\mathcal{L}=2\times10^{31}$	n. with $\mathcal{L}=10^{31}$	Ref.
X(3872)	432000	43200	21600	[20]
Y(4260)	16400	1640	820	[20, 21]
$Z(3900)^{+}$	3526	353	176	[13, 20, 21]

- [13] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 110 (2013) 252001.
- [19] M. Galuska et al., PoS (Bormio 2013) 023.
- [20] S. Lange *et al.*, arXiV:1311.7597 (2013) [hep-ex].
- [21] E. Prencipe et al., arXiv:1410.5201 (2014) [hep-ex].

$$N = \mathcal{L} * \sigma * duty factor 50\%$$

 $N_z = N_y * 21.5\%$ [13]

		20	- 01	01	
 Resonance	n. with $\mathcal{L}=$	2×10^{32}	n. with $\mathcal{L}=2\times10^{31}$	n. with $\mathcal{L}=10^{31}$	Ref.
X(3872)		700	(*) 70 (*)	35 (*)	[19, 20]
Y(4260)	(**)	16400	1640	820	[20, 21]
$Z(3900)^{+}$	(**)	3526	353	176	[13, 20, 21]

- [13] M. Ablikim et al. (BESIII), Phys. Rev. Lett. 110 (2013) 252001.
- [19] M. Galuska et al., PoS (Bormio 2013) 023.
- [20] S. Lange *et al.*, arXiV:1311.7597 (2013) [hep-ex].
- [21] E. Prencipe *et al.*, arXiv:1410.5201 (2014) [hep-ex].
- (*) $N = \mathcal{L} * \sigma * \epsilon * BR_i = 50 \text{ nb} * \mathcal{L} * \epsilon * BR_i$. BR(J/ $\psi \rightarrow e^+e^-$) = 0.06; BR (X(3872))=0.1; $\epsilon = 27\%$ A full sim. analysis is performed for X(3872), but no forward spectrometer is included in this old simulation (\rightarrow 2011). Higher N is expected when the analysis will be done again (mar15?)
- (**) Only <u>produced events</u>. Analysis note is still not available to quote reconstructed events.

Note: Martin is at the end of his PhD thesis time. A note on X(3872) will be documented later on. From his talk at the Coll meeting (2013):

Tightest Upper Limit for X(3872) Peak Production Cross Section in pp

$$\sigma^{\text{peak}}_{\text{[p\bar{p}}\rightarrow\text{X(3872)]}} \stackrel{(J=1)}{\sim} \frac{3\cdot 4\pi}{m_{\text{X(3872)}}^2 - 4m_{\text{p}}^2} \cdot 2.0 \cdot 10^{-3} \cdot 2.6 \cdot 10^{-2} = 66.6 \pm 6.7 \text{ nb}$$
 using $\mathcal{B}(B^+ \rightarrow \text{X(3872)}K^+ \rightarrow p\bar{p}K^+)$ the result is $68.0 \pm 4.0 \text{ nb}$

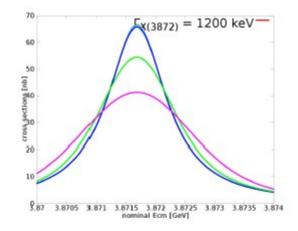
Comparison With Assumptions in Previous Work

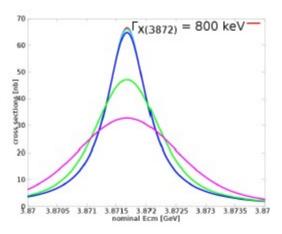
Resonance Scan with $\sigma^{peak}_{[p\overline{p}\to X(3872)]}=50\,\mathrm{nb}$ and $\Gamma_{X(3872)}=100\,\mathrm{keV}$ was shown to be feasible [gal11] with

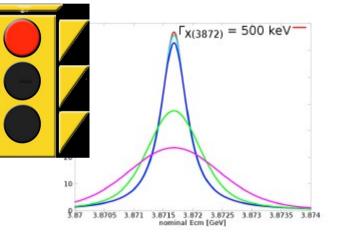
- $\mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-) = 10\%$ (estimated)
- $\Delta p_{\text{beam}}/p_{\text{beam}} \leq 2 \cdot 10^{-5} \text{ [phb09]}$
- Luminosity $\mathcal{L} = 2 \cdot 10^{31} \text{ cm}^{-2} \text{ s}^{-1} \text{ [phb09]}$

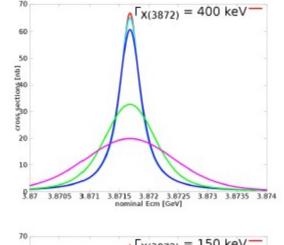
The current values are

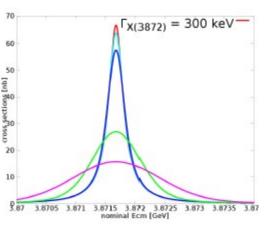
- $\mathcal{B}(X(3872) \to J/\psi \pi^+\pi^-) > 2.6\% \text{ [pdg12]}$
- $\Delta p_{\text{beam}}/p_{\text{beam}} \leq 4 \cdot 10^{-5} \text{ [stt12]}$
- Peak Luminosity $\mathcal{L} = 2 \cdot 10^{31} \text{ cm}^{-2} \text{ s}^{-1} \text{ [stt12]}$

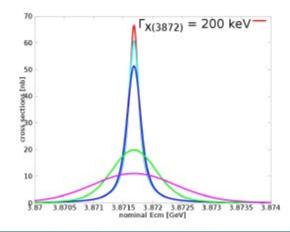

Software upgrade, different input values

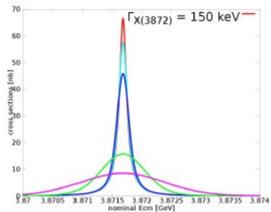

[phb09] The PANDA Collaboration: Physics Book (2009) [stt12] The PANDA Collaboration: STT TDR (2012) [gal11] M. J. Galuska, J. S. Lange: Talk at QWG (2011)

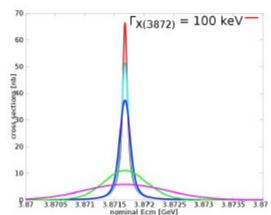

higher reco. X(3872) statistics, but nothing approved right now 34


2011


2013







What does it mean high luminosity mode, high resolution mode, low luminosity mode?

·					
Beam Mom [GeV/c]	cms Energy [GeV/c2]	Cross Section [mb]*	Average Luminosity [cm-2s-1]**	Interaction Rate [MHz]	
1,50	2,25	100,26	5,0E+31	5,01	
4,06	3,09	65,80			
8,90	4,31	57,51			
11,91	4,92	51,70			
15,00	5,47	51,00	1,6E+32	8,16	

High Luminosity

Low Luminosity

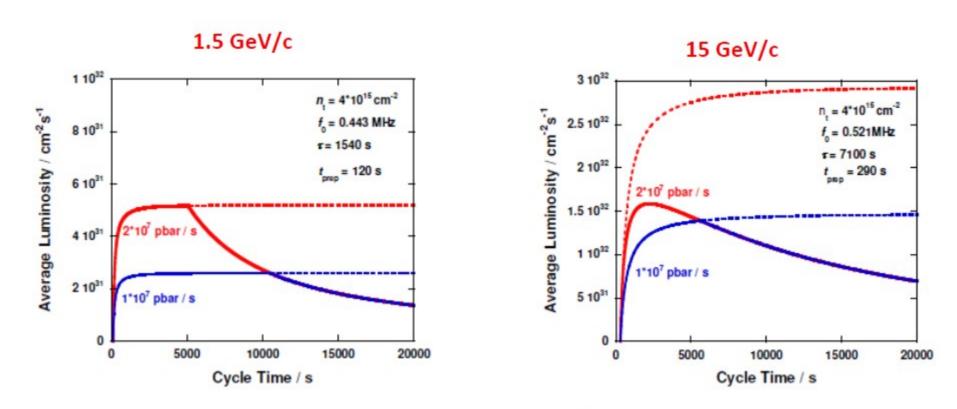
	Beam Mom [GeV/c]	cms Energy [GeV/c2]	Cross Section [mb]*	Average Luminosity [cm-2s-1]***	Interaction Rate [MHz]
	1,50	2,25	100,26	7,0E+30	0,70
	4,06	3,09	65,80		
	8,90	4,31	57,51	×	
П	11,91	4,92	51,70		
	15,00	5,47	51,00	1,1E+31	0,56

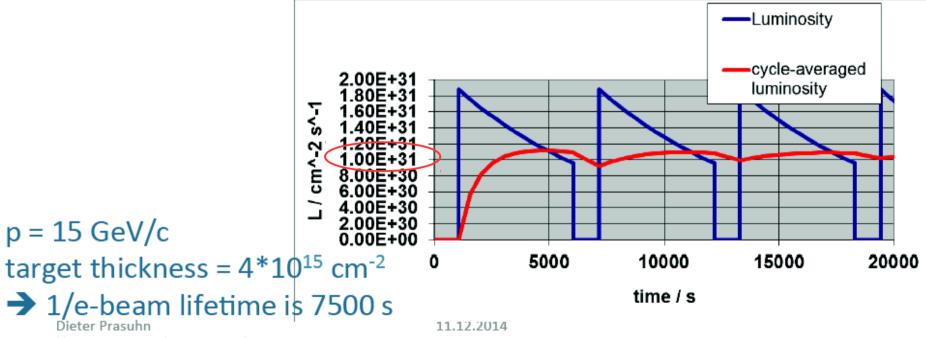
^{*} http://lxpndwww.gsi.de/pbarx/showdata.php?chan=1000

^{**} Panda Physics Performance Report page 29 Figure 2.15

^{***} https://indico.gsi.de/getFile.py/access?contribId=24&sessionId=7&resId=0&materialId=slides&confId=2366

Panda Physics Performance Report page 29 Figure 2.15




Figure 2.15: The maximum number of particles is limited to 10¹¹ (solid line), and unlimited (dashed lines).

—Luminosity cycle-averaged **luminosity** 5000 10000 15000 20000 time / s

p = 1.5 GeV/ctarget thickness = $4*10^{15}$ cm⁻²

→ 1/e-beam lifetime is 2200 s

https://indico.gsi.de/getFile.py/access?contribId=24&sessionId=7&resId=0&materialId=slides&confId=2366

p = 15 GeV/c

Some points of discussion, today:

- We have approved results for X(3872), and Y(4260). Green light!
- Extrapolations to $L = 10^{31}$ cm⁻² s⁻¹ \rightarrow 0.432 pb⁻¹/day have been shown. Are we going to update the published results? To what/how? <u>No clue</u>. Who is willing to work on the new simulations, then? <u>No release note, no update (new PubCom rules)!</u>

Which luminosity shall we use to perform calculations and show results, from now?

- Proposed Z state search: do we switch on the green light?
- My question: simulation on Z(3730) ⇒ need to use a code in /development/.
 Am I authorized to proceed with the new emc-code?
- My request: can I get 2-3 Tb disk space on Prometheus, for this simulation?

Thank you for your kind attention!

My special thanks to Alexander, Martin, Sören and Stefano, with whom I've been working on X Y Z states, for the useful discussion, great cooperation, and extremely valuable effort.

Time for questions.....