



# Study of $\psi(1^{3}D_{2})$ charmonium at PANDA



Zhiqing Liu JGU Mainz

liuz@uni-mainz.de

#### Charmonium



#### Charmonium and XYZ particles



Godfrey & Isgur, PRD32, 189 (1985)

#### **D-wave Charmonium**



 $\psi(^{3}D_{2})$ 

- D-wave charmonium: potential model predict its mass close to/above open charm threshold.
- 2. Mass: ~3810-3840 MeV (models...).
- 3. Narrow  $\psi({}^{3}D_{2})$  state: J<sup>PC</sup>=2<sup>--</sup>, width ~400 keV.
- 4. Dominant decay:  $\psi({}^{3}D_{2}) \rightarrow \gamma \chi_{c1}$ , Br~50%.





- Evidence:  $2.8\sigma$
- M=3836±13 MeV
- Production cross
  section comparable to
  ψ(2S)
- Background also controllable

• Available at PANDA

### Belle & BESIII: X(3823)= $\psi({}^{3}D_{2})$

#### PRL 111, 032001 (2013)



772 M B mesons: Evidence:  $3.8\sigma$   $B \rightarrow KX(3823) \rightarrow K\gamma\chi_{c1}$ M=(3823.1±1.8±0.7) MeV  $\Gamma$ =(1.7±5.5) MeV <24 MeV @ 90% C.L. ~3.8 fb<sup>-1</sup> data Observation: 6.7 $\sigma$  ! e+e- $\rightarrow \pi^{+}\pi^{-}X(3823)$  $\rightarrow \pi^{+}\pi^{-}\gamma\chi_{c1}$ M=(3821.7±1.3±0.7) MeV  $\Gamma$ <16 MeV @ 90% C.L. 7

#### **Opportunity at PANDA**

#### Mass & Width @ PANDA?

- Both Belle & BESIII can not measure X(3823) mass & width precisely, and spin-parity due to limited statistics.
- 2. Especially for width, BESIII/Belle II need an order of magnitude more data.
- 3. PANDA has a high potential to precisely measure mass & width of X(3823).

#### Coupling

Formation experiment: pp→X(3823)→γχ<sub>c1</sub>
 Coupling:

| $X(c\overline{c})$                  | $\mathcal{B}(X \to \bar{p}p)$      | $\Gamma(X \to \bar{p}p) \text{ (keV)}$ |
|-------------------------------------|------------------------------------|----------------------------------------|
| $\eta_c(1^1S_0)$                    | $(1.52 \pm 0.16) \times 10^{-3}$   | 48.9                                   |
| $J/\psi(1^3S_1)$                    | $(2.120\pm 0.029)\times 10^{-3}$   | 0.2                                    |
| $\chi_{c0}(1^3P_0)$                 | $(2.25 \pm 0.09) \times 10^{-4}$   | 2.36                                   |
| $\chi_{c1}(1^3P_1)$                 | $(7.72 \pm 0.35) \times 10^{-5}$   | 0.06                                   |
| $\chi_{c2}(1^3P_2)$                 | $(7.5 \pm 0.4) 	imes 10^{-5}$      | 0.14                                   |
| $\psi(2S) = \psi(2^3S_1)$           | $(2.80 \pm 0.11) 	imes 10^{-4}$    | 0.08                                   |
| $\psi(3770) = \psi(1^3 D_1) \ [12]$ | $7.1^{+8.6}_{-2.9} \times 10^{-6}$ | 0.19                                   |
|                                     |                                    |                                        |

Conservative solution from BESIII 10

#### Coupling

- 1. Partial width:  $\Gamma[X(3823) \rightarrow pp]^{\sim}0.06 0.2 \text{ keV}$
- 2. Depends on X(3823) width: ~400 keV  $\rightarrow \sigma[pp \rightarrow X(3823)]$ ~331 - 1103 nb  $\rightarrow o(10^2)$  nb (model dependent width)
- 3. Br[X(3823)→ $\gamma\chi_{c1}$ ]=50%,  $\varepsilon$ ~40% → $\sigma^{eff}$ ~2.67 – 8.90 nb > $\sigma^{eff}[\eta_c \rightarrow \gamma\gamma]$ ~50 pb (E835, PLB566,45-50) > $\sigma^{eff}[X(3872) \rightarrow \pi^+\pi^-J/\psi]$ <0.3 nb @ 90% C.L.
- 4. Promising project, determine spin-parity !

#### LHCb's measurement



 $\frac{\mathcal{B}(B^+ \to X(3872)K^+ \to p\bar{p}K^+)}{\mathcal{B}(B^+ \to J/\psi K^+ \to p\bar{p}K^+)} < 0.017 \text{ similar for X(3823)}$ 

Belle's measurement: PRL111,032001(2013).  $\rightarrow$  Br[B $\rightarrow$ KX(3823)]~2\*10<sup>-5</sup>

Considering LHCb's measurement: →Br[X(3823)→pp]<2\*10<sup>-3</sup>@90% C.L. >> (0.06 – 0.2) keV/400 keV

#### MC simulation @ PANDA

# $p\overline{p} \rightarrow X(3823) \rightarrow \gamma \chi_{c1} \rightarrow \gamma \gamma J/\psi$

- MC simulation
- Decay chain:
- pp $\rightarrow$ X(3823) at E<sub>cm</sub>=3.8222 GeV
- X(3823)  $\rightarrow \gamma \chi_{c1}$  with ~50% branching raito
- $\chi_{c1} \rightarrow \gamma J/\psi$  with branching ratio 33.9%
- $J/\psi \rightarrow \mu^+\mu^- \& e^+e^-$  with branching raito 11.9%
- PANDA Root:
- Full detector setup + Full simulation
- scrut14

## $p\overline{p} \rightarrow X(3823) \rightarrow \gamma \chi_{c1} \rightarrow \gamma \gamma J/\psi$

- Event selection:
- Two photons and two leptons from  $J/\psi$ .
- Tight lepton identification: eID>0.5; muID>0.5.
- Vertex fit: leptons from the original vertex.
- 4C fit: leptons + photons (best  $\chi^2$  combination).
- In ppbar CM frame, high energy gamma +J/ $\psi$

 $p\overline{p} \rightarrow X(3823) \rightarrow \gamma \chi_{c1} \rightarrow \gamma \gamma J/\psi$ 6000 6000 5000 5000 <del>6</del> 4000 0.1 4000 Events / Events / 3000 3000 2000 2000 1000 1000 0 0 0.5 0.2 í٥ 0.4 0.8 n 0.6 μID elD

PID: all sub-detector combined p-value (EMC:Drc:Disc:Stt:Mdt:Mvd)

The dominant background should be pions 1. Tight PID (p>0.5) for electrons

2. Tight PID (p>0.5) for muons

 $p\bar{p} \rightarrow X(3823) \rightarrow \gamma_1 \chi_{c1} \rightarrow \gamma_1 \gamma_2 J/\psi$ 



- In lab-frame:
- MC-Truth level energy distributions of two photons.
- Threshold: >50 MeV for all photon candidates.

 $p\overline{p} \rightarrow X(3823) \rightarrow \gamma_1 \chi_{c1} \rightarrow \gamma_1 \gamma_2 J/\psi$ 



- Boost to pp central-of-mass (CM) frame:
- Low energy:  $\gamma_1$  have good energy resolution.
- High energy:  $\gamma_2$  was wide due to Lorentz boost effect.
- E(γ<sub>2</sub>)>E(γ<sub>1</sub>)

 $p\overline{p} \rightarrow X(3823) \rightarrow \gamma \chi_{c1} \rightarrow \gamma \gamma J/\psi$ 



1. 4C kinematic fit is performed to the leptons and photons

- 2. (Left) lepton pairs invariant mass distribution, (right) High energy photon combined with J/ $\psi$  candidate
- 3. Signal efficiency: 42.5%
- 4. Background: no events surviving in 10 M DPM MC sample, total hadron events about 60 mb\*0.5 pb<sup>-1</sup>=3\*10<sup>10</sup>

#### Data taking proposal

#### Data taking plan

- 1. Mass: 3822.2±1.1 MeV (BESIII+Belle)
- 2. High resolution mode, beam spread: 50 keV
- Find the peak position → Scan 15 points with
  0.5 MeV step: m, m±0.5, m±1.0, m±1.5
  MeV... with 0.5 pb<sup>-1</sup>/point (~7 days)
- 4. Add 5 7 point for fine scan (100 keV step) to measure m & Γ (spin-parity)
- 5. Total beam time ~10 days (L=2\*10<sup>31</sup> /cm<sup>2</sup>/s) <sup>21</sup>

#### **Beam Spread**



In high resolution mode:

- Beam energy spread is ~50 keV
- Beam spread effect is small compared with ψ(<sup>3</sup>D<sub>2</sub>) intrinsic width.

#### Summary

1. 1<sup>3</sup>D<sub>2</sub> charmonium state need to be further investigated.

2. PANDA has a high potential to study  $1^{3}D_{2}$  charmonium (m &  $\Gamma$ ) [even at early stage].

3. More competitive than BESIII, Belle and LHCb.

Thanks (谢谢)!