

Baryon Physics with PANDA

Karin Schönning, Uppsala University, on behalf of the Hyperon Physics Working Group, PANDA

> PANDA Physics Workshop, June 9-10th Uppsala, Sweden

Outline

- Introduction
- Part I: Baryon Spectroscopy
 - Baryons and the quark model
 - Light baryons
 - Strange hyperons
 - Prospects for PANDA
- Part II: Spin observables in $\overline{p}p \rightarrow \overline{Y}Y$
 - Spin $\frac{1}{2}$ hyperons
 - Spin $\frac{3}{2}$ hyperons
 - CP violation
 - Previous measurements of $\overline{p}p \rightarrow \overline{Y}Y$
 - Prospects for PANDA

Introduction

- Light quark (*u*, *d*) systems:
 - Highly non-perturbative interactions.
 - Relevant degrees of freedom are hadrons.
- Systems with strangeness
 - − Scale: $m_s \approx 100 \text{ MeV} \sim \Lambda_{\text{QCD}} \approx 200 \text{ MeV}$.
 - Relevant degrees of freedom?
 - Probes QCD in the intermediate domain.
- Systems with charm
 - Scale: m_c ≈ 1300 MeV.
 - Quark and gluon degrees of freedom more relevant.
 - By comparing strange and charmed hyperons we learn about QCD at two different energy scales.

Why baryons?

Baryon Spectroscopy

- New baryon states?
- Properties of already known states.
- Symmetries in the observed spectrum?

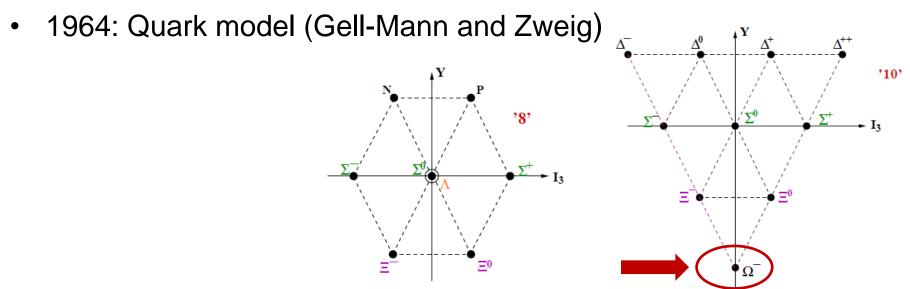
Why baryons?

Baryon Spectroscopy

- New baryon states?
- Properties of already known states.
- Symmetries in the observed spectrum?

Spin Observables in baryon production / decay

- Reaction mechanism at different energy scales.
- The role of spin in the production of heavy quarks.
- CP violation



Part I: Baryon Spectroscopy

Baryons and the quark model

- 1950's and 1960's: a multitude of new particles discovered \rightarrow obvious they could not all be elementary
- 1961: Eight-fold way, organising mesons and spin ¹/₂ baryons into octets and spin ³/₂ into a decuplet as a consequence of SU(3) flavour symmetry
- 1962: Discovery of the predicted Ω⁻ demonstrates the success of the Eightfold way.

Baryons and the quark model

*PR 125 (1962) 1067

**PRD 58 (1998) 094030

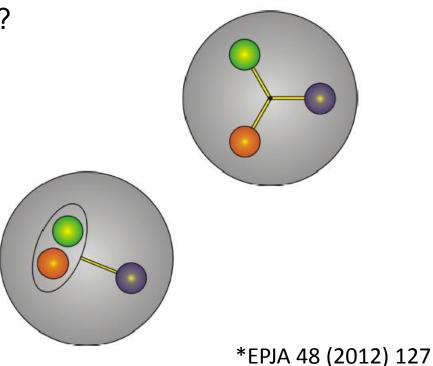
- The simple (constituent) quark model* was successful in classifying hadrons and describing static properties of hadrons.
- Unable to explain *e.g.*
 - Spin structure of the nucleon
 - Flavour asymmetry of the nucleon sea
 - Level ordering in light and strange baryon spectra**

Baryons and the quark model

- The simple (constituent) quark model* was successful in classifying hadrons and describing static properties of hadrons.
- Unable to explain *e.g.*
 - Spin structure of the nucleon
 - Flavour asymmetry of the nucleon sea
 - Level ordering in light and strange baryon spectra**

The challenging task of baryon spectroscopy

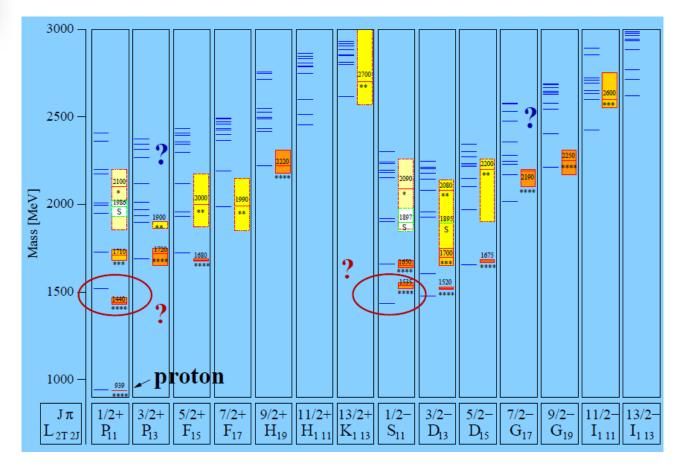
*PR 125 (1962) 1067 **PRD 58 (1998) 094030



Light baryon spectroscopy

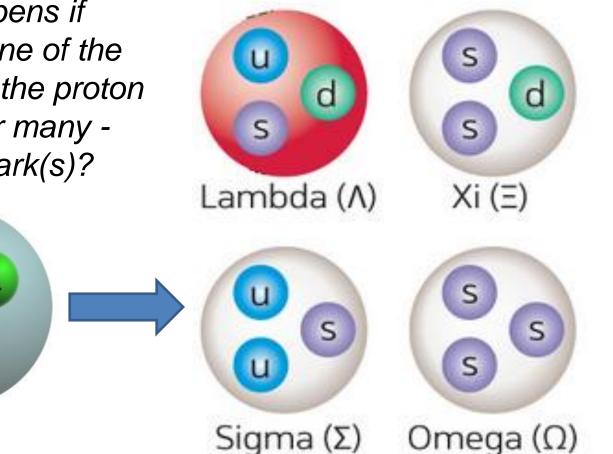
We have learned a lot from the great progress in light baryon spectroscopy (pion beams, photoproduction).

Open questions regarding the excited light baryon spectrum:*


- Relevant degrees of freedom?
- Missing states
- High mass parity doublets
- Order of low mass positive and negative parity states
 (Roper and S₁₁(1535))

UPPSALA UNIVERSITET

Light baryon spectroscopy


Missing states: # of observed states < # of predicted states

- Because there are no such states
- or because they do not couple to $N\pi$ final states?

Strange (and charmed) hyperons

What happens if we replace one of the light quarks in the proton with one - or many heavier quark(s)?

Strange hyperons

Excited strange hyperon spectrum:

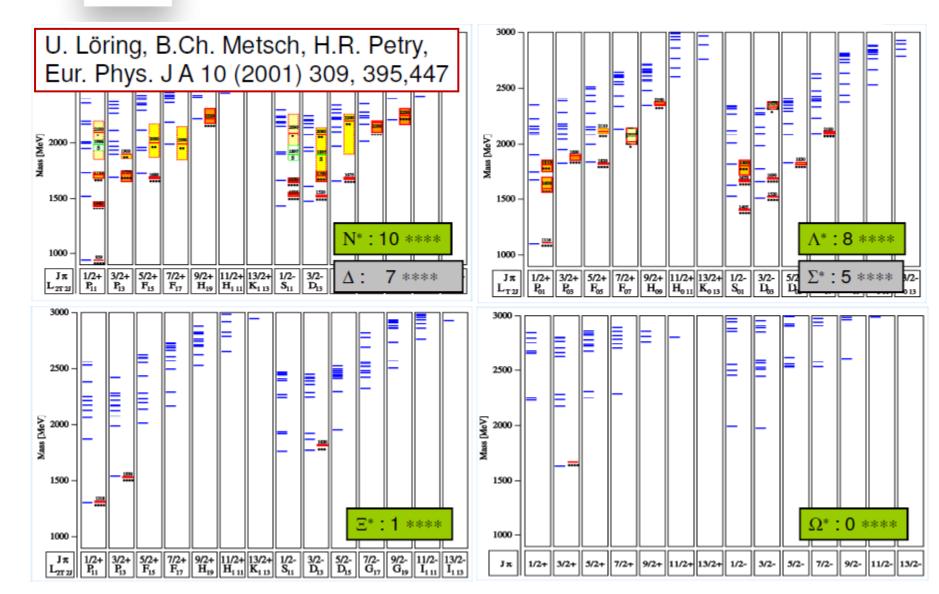
- SU(6) x O(3) classification (spin, flavour and *L*)
- Very scarce data bank on double and triple strangeness
- Octet ±* partners of N*?
 Only a few found
- Decuplet Ξ* and Ω* partners of Δ*?
 - Nothing found

J^P	(D,L^P_N)	S	Octet n	nembers		Singlets
1/2+	(56,0^+)	1/2 N(939) A(1116)	S (1193)	E(1318)	-
1/2+	$(56,0^+_2)$	1/2 N(144	0) A(1600)	$\Sigma(1660)$	E(?)	
1/2-	$(70,1_1^-)$	1/2 N(153	5) A(1670)	$\Sigma(1620)$	三(?)	A(1405)
3/2-	$(70,1_1^-)$	1/2 N(152	0) A(1690)	$\Sigma(1670)$	Ξ(1820)	A(1520)
1/2-	$(70,1_1^-)$	3/2 N(165	0) A(1800)	$\Sigma(1750)$	Ξ(?)	
3/2-	$(70,1_{1}^{-})$	3/2 N(170	0) A(?)	$\Sigma(?)$	E(?)	
5/2-	(70,11)	3/2 N(167	5) A(1830)	E(1775)	三(?)	
1/2+	$(70,0^+_2)$	1/2 N(171	0) A(1810)	S (1880)	E(?)	A(?)
3/2+	$(56, 2^+_2)$	1/2 N(172	0) A(1890)	$\Sigma(?)$	三(?)	
5/2+	$(56, 2^+_2)$	1/2 N(168	 A(1820) 	S (1915)	E(2030)	
7/2-	$(70, 3^{-}_{3})$	1/2 N(219	0) A(?)	E(?)	Ξ(?)	A(2100)
9/2-	$(70, 3^{-}_{3})$	3/2 N(225	0) A(?)	$\Sigma(?)$	三(?)	
9/2+	$(56, 4_4^+)$	1/2 N(222	0) <mark>A(2350)</mark>	$\Sigma(?)$	Ξ(?)	
		_	Decuplet	members	•	
3/2+	$(56,0^+_0)$	3/2 4(123	 Σ(1385) 	Ξ(1530)	Ω(1672)	
3/2+		3/2 \(\Delta(160))	the second se	三(?)	Ω(?)	
1/2-		1/2 \(\Delta(162)		三(?)	\$\$ (?)	
3/2-	$(70,1_1^-)$	1/2 4(170	0) Σ(?)	三(?)	\$\$ (?)	
5/2+	$(56,2^+_2)$	3/2 4(190	5) <i>S</i>(?)	三(?)	\$\$ (?)	
7/2+	2.0.0	3/2 4(195	2.0		Ω(?)	

 $1/2^+$ (56,4⁺₄) 3/2 Δ (2420) Σ (?

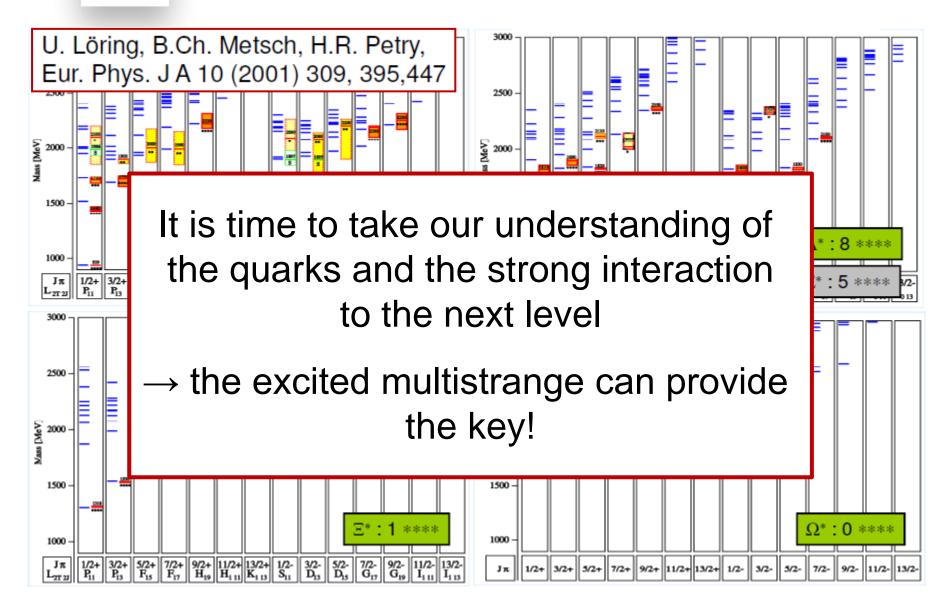
Strange hyperons

- Are the states missing
 - because they are not there
 - or because previous experiments haven't been optimal for multistrange baryon search?
- PDG note on Ξ hyperons:
 - "...nothing of significance on Ξ resonances has been added since our 1988 edition."
- Most previous experiments are performed with kaon beams
 - \rightarrow difficult to measure double and triple strange states


J^P	(D, L_N^P)	S	Octet n	nembers		Singlets
1/2+	(56,0^+)	1/2 N(939)	A(1116)	£(1193)	E(1318)	-
1/2+	$(56,0^+_2)$	1/2 N(1440)	A(1600)	$\Sigma(1660)$	E(?)	
1/2-	$(70,1_{1}^{-})$	1/2 N(1535)	A(1670)	$\Sigma(1620)$	Ξ(?)	A(1405)
3/2-	$(70,1_{1}^{-})$	1/2 N(1520)	A(1690)	$\Sigma(1670)$	Ξ(1820)	A(1520)
1/2-	$(70,1_{1}^{-})$	3/2 N(1650)	A(1800)	$\Sigma(1750)$	Ξ(?)	
3/2-	$(70,1_{1}^{-})$	3/2 N(1700)	A(?)	$\Sigma(?)$	E(?)	
5/2-	(70,11)	3/2 N(1675)	A(1830)	E(1775)	三(?)	
1/2+	$(70,0^+_2)$	1/2 N(1710)	A(1810)	S (1880)	E(?)	A(?)
3/2+	$(56, 2^+_2)$	1/2 N(1720)	A(1890)	$\Sigma(?)$	三(?)	
5/2+	$(56,2^+_2)$	1/2 N(1680)	A(1820)	S (1915)	E(2030)	
7/2-	$(70, 3^{-}_{3})$	1/2 N(2190)	A(?)	$\Sigma(?)$	Ξ(?)	A(2100)
9/2-	$(70, 3^{-}_{3})$	3/2 N(2250)	A(?)	$\Sigma(?)$	三(?)	
9/2+	$(56, 4^+_4)$	1/2 N(2220)	A(2350)	$\Sigma(?)$	三(?)	
		[Decuplet	members	•	
3/2+	(56.0^+_{2})	3/2 ∆ (1232)	$\Sigma(1385)$	Ξ(1530)	Ω(1672)	

$3/2^{+}$	$(56,0^+_0)$	3/2 (1232)	$\Sigma(1385)$	Ξ(1530)	$\Omega(1672)$
3/2+	$(56,0^+_2)$	3/2 2(1600)	$\Sigma(?)$	5(?)	Ω(?)
1/2-	$(70,1_{1}^{-})$	1/2 (1620)	$\Sigma(?)$	E(?)	\$\$(?)
3/2-	$(70,1_1^-)$	1/2 2(1700)	$\Sigma(?)$	E(?)	Ω(?)
5/2+	$(56, 2^+_2)$	3/2 (1905)	$\Sigma(?)$	Ξ(?)	Ω(?)
7/2+	$(56, 2^+_2)$	3/2 2(1950)	$\Sigma(2030)$	三(?)	Ω(?)
$11/2^+$	$(56, 4^+_4)$	3/2 (2420)	$\Sigma(?)$	三(?)	\$\$ (?)

UPPSALA UNIVERSITET


Strange hyperons

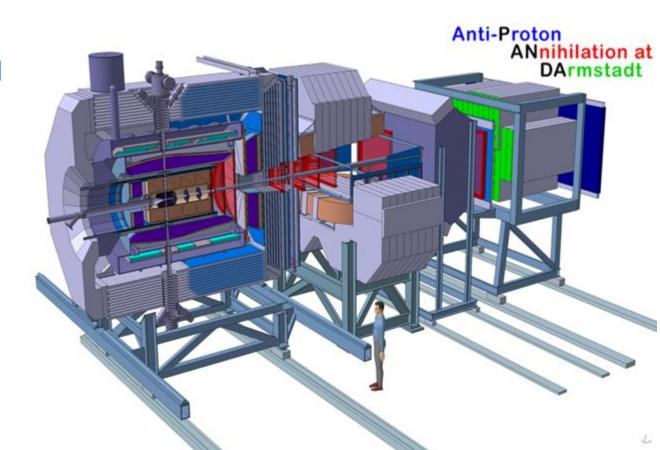
UPPSALA UNIVERSITET

Strange hyperons

Prospects for PANDA

- A lot of previous and ongoing activity in nucleon spectroscopy (CLAS @ JLAB, CBELSA/TAPS)
- Charmed baryons often by-product at b-factories (BaBar, Belle, CLEO, LHCb)

• PANDA can fill the gap in the strange sector \rightarrow the full Ξ and Ω spectra are accessible with PANDA!



Prospects for PANDA

- Antiprotons from HESR with momenta 1.5 -15 GeV/c.
- Unpolarised beam and target
- Near 4π coverage

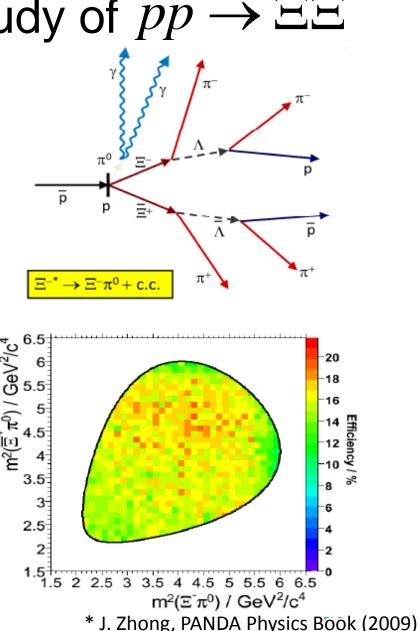
UPPSALA UNIVERSITET

- Good momentum and vertex resolution.
- PID
- EM calorimetry

UPPSALA UNIVERSITET

Prospects for PANDA

- Large cross sections for $\overline{p}p \to \overline{Y}Y^*$
 - $-\overline{p}p \rightarrow \Xi\Xi \approx \mu b$
 - $-\,\overline{p}p\rightarrow\overline{\Omega}\Omega\approx 0.002-0.06\mu b$
- No extra mesons in the final state needed for strangeness (or charm) conservation
- Symmetry in hyperon and antihyperon observables
- PANDA detector versatile (coverage, resolution, PID...)


PANDA is a unique experiment in baryon spectroscopy beyond N^* and Δ !

141

UPPSALA UNIVERSITET

Feasibility study of $\overline{p}p \rightarrow \overline{\Xi}\Xi^*$

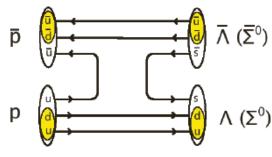
- $p_{beam} = 6.57 \text{ GeV/c}$
- 10⁷ MC events produced
- Consider the $\Xi^{-*} \to \Xi^{-} \pi^{0}$ decay
- Background generated with DPM
- Simple MC framework taking efficiencies and detector resolution into account
- Results*:
 - 10-20% efficiency
 - Smooth efficiency
 - S/B > 19

Baryon spectroscopy subtopics with PANDA

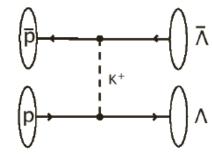
Study excited states of

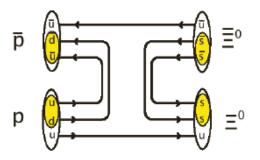
- double-strange hyperons (Ξ*)
- triple-strange hyperons (Ω^*)
- charmed hyperons $(\Lambda_c^*, \Sigma_c^*)$
- hidden-charm nucleons $(N_{c\bar{c}})$
- non-strange baryons (N*)
- single-strange hyperons (Λ^*, Σ^*)

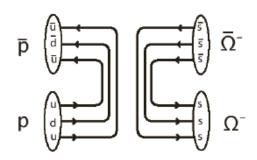
Part II: Spin Observables in Hyperon production

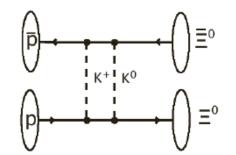


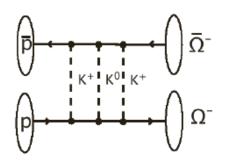
Or: what can we learn from looking into detail how known hyperons are produced?



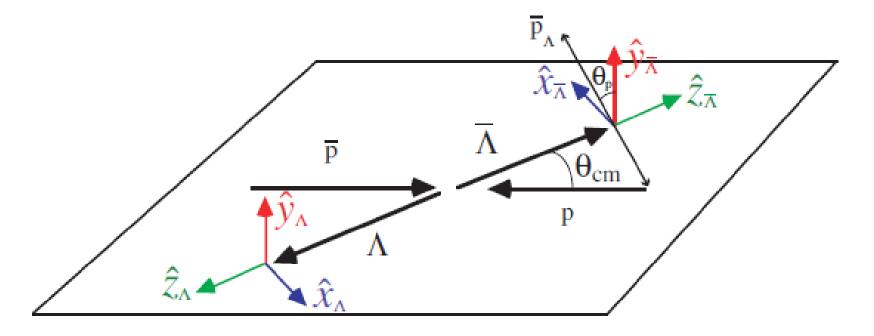

Strange and charm production

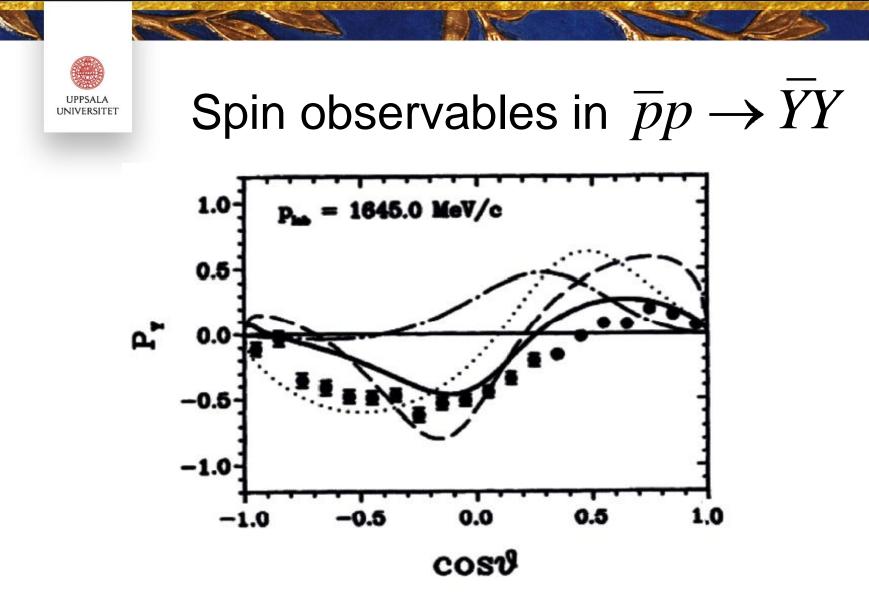

Models based on the constituent quark-gluon picture* and on the hadron picture** or a combination of the two ***




UPPSALA UNIVERSITET

Different models give different predictions of *e.g.*


- the polarisation of the outgoing hyperon
- the correlation of the spin of the hyperonantihyperon


```
*PLB 179 (1986) 15; PLB 165 (1985) 187;
NPA 468 (1985) 669;
** PRC 31(1985) 1857; PLB179 (1986) 15;
PLB 214 (1988) 317;
*** PLB 696 (2011) 352.
```


Spin observables in $\,\overline{p}p \to YY$

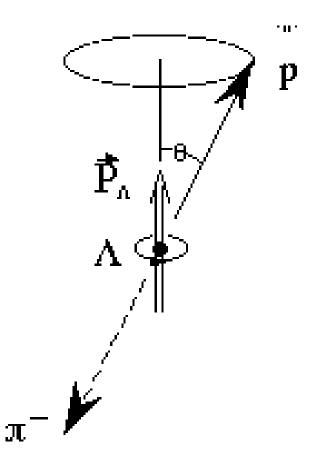
- Vector polarisation P the most straight-forward observable for spin $\frac{1}{2}$ hyperons.
- Strong interactions: normal to the production plane (y-direction)

Polarisation and other spin observables: powerful tool in testing models.

Figure from Phys. Rep. 368 (2002) 119.

Spin observables in $\overline{p}p \rightarrow YY$

Polarisation

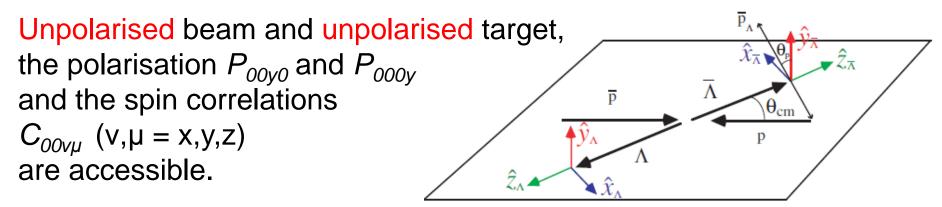

Accessible by the parity violating decay: Decay products preferentially emitted along the spin of the hyperon.

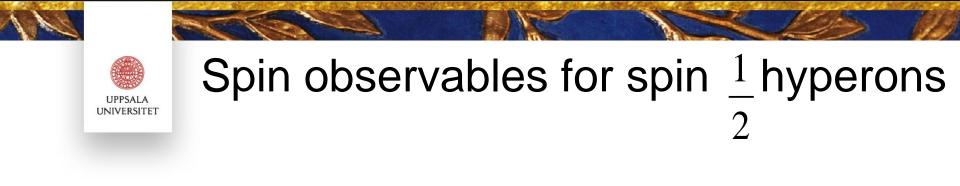
> $\Lambda \rightarrow p\pi^{-}$: Proton angular distribution

> $I(\cos\theta_{\rm p}) = N(1 + \alpha P_{\Lambda} \cos\theta_{\rm p})$

 P_{Λ} : polarisation

 α = 0.64 asymmetry parameter



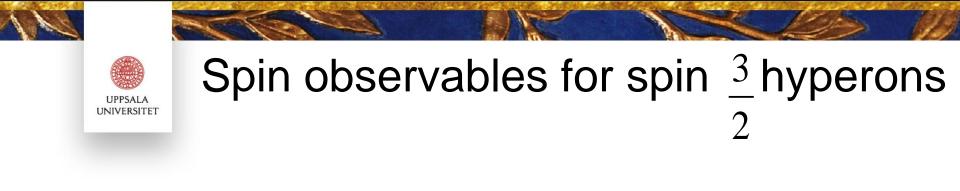


Spin observables for spin $\frac{1}{2}$ hyperons

Polarised Particle	None	Beam	Target	Both
None	I ₀₀₀₀	A 1000	A_{0j00}	A_{ij00}
Scattered	$P_{00\mu0}$	$D_{i0\mu0}$	$K_{0j\mu0}$	$M_{ij\mu0}$
Recoil	$P_{000\nu}$	K_{i00v}	D_{0j0v}	$N_{ij0\nu}$
Both	$C_{00\mu\nu}$	$C_{i0\mu\nu}$	$C_{0j\mu\nu}$	$C_{ij\mu\nu}$

In the $\overline{p}p \rightarrow \overline{Y}Y$ reaction there are 256 spin variables.

If the decay product of the hyperon is a hyperon, $e.g. \equiv \rightarrow \Lambda K$, then also β and γ can be obtained from the decay protons of the Λ .


$$I(\theta_{p},\phi_{p}) = \frac{1}{4\pi} \left[1 + \alpha_{\Xi}\alpha_{\Lambda}\cos\theta_{p} + \frac{\pi}{4}\alpha_{\Lambda}P\sin\theta_{p}(\beta_{\Xi}\sin\phi_{p} - \gamma_{\Xi}\cos\phi_{p}) \right]$$

$$\mu_{\pi}$$

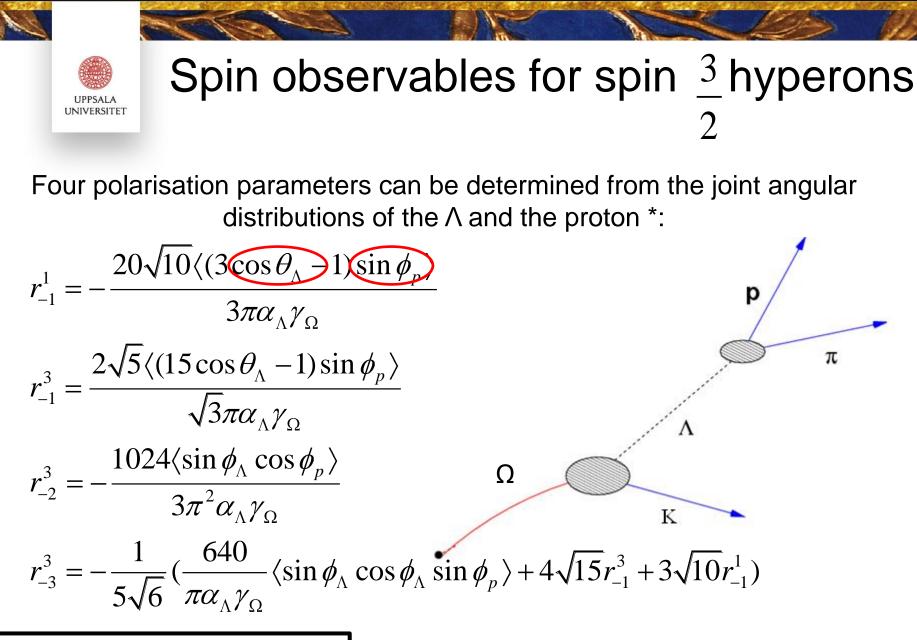
$$\pi$$


$$\alpha, \beta, \gamma \text{ decay parameters.}$$

$$related to the decay amplitudes T_{s}
and $T_{p}$$$

The Ω hyperon is more complicated.

- Spin $\frac{1}{2}$: **3** polarisation parameters: r_{-1}^{1} , r_{0}^{1} and r_{1}^{1} (P_x, P_y and P_z)
- Spin $\frac{3}{2}$: **15** polarisation parameters: $r_{.1}^{1}$, r_{0}^{1} , r_{1}^{1} , $r_{.2}^{2}$, $r_{.1}^{2}$, r_{0}^{2} , r_{1}^{2} , r_{2}^{2} , $r_{.3}^{3}$, $\frac{2}{r_{.2}^{3}}$, $r_{.1}^{3}$, r_{0}^{3} , r_{1}^{3} , r_{2}^{3} and r_{3}^{3} .


The $p\overline{p} \rightarrow \Omega\overline{\Omega}$ reaction:

15 polarisation parameters, **7** are accessible in $\Omega \rightarrow \Lambda$ K with an unpolarised beam and target.

3 polarisation parameters r_2^2 , r_1^2 , r_0^2 can be retrieved from the angular distribution of the Λ^* , assuming $\alpha_{\Omega} = 0$ consistent with experiment.**

$$r_0^2 = \frac{15}{2\sqrt{3}} \left(\frac{1}{3} - \langle \cos^2 \theta_\Lambda \rangle \right)$$
$$r_2^2 = \frac{8}{3} 1 - \langle \cos^2 \theta_\Lambda \rangle - 2 \langle \sin^2 \theta_\Lambda \sin^2 \phi_\Lambda \rangle$$
$$r_1^2 = 5 \langle \cos \theta_\Lambda \sin \theta_\Lambda \cos \phi_\Lambda \rangle$$

*Erik Thomé, Multistrange and Charmed Antihyperon-Hyperon Physics for PANDA Ph. D. Thesis, Uppsala University (2012) ** PDG, J. Phys. G 33 (2006) 1.

α, β, γ decay parameters. Assume: α_Ω = 0, β_Ω ≈ 0

*Erik Thomé, Ph. D. Thesis and later work

Spin observables in $\overline{p}p \rightarrow YY$

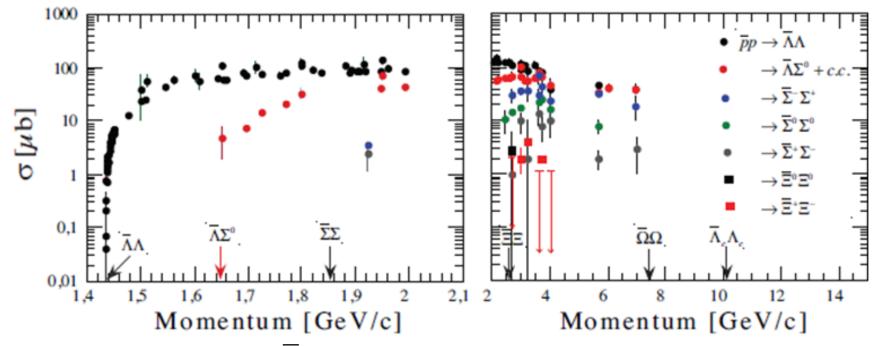
- Spin $\frac{1}{2}$ hyperons (Λ , Ξ , Λ_c) :
 - Polarisation.
 - Spin correlations and singlet fraction: $SF = \frac{1}{4}(1 + C_{xx} - C_{yy} + C_{zz})$
- Spin $\frac{3}{2}$ hyperons into spin $\frac{1}{2}$ hyperons ($\Omega \rightarrow \Lambda K$):
 - 7 polarisation parameters + degree of polarisation.

$$d(\rho) = \sqrt{\sum_{L=1}^{2j} \sum_{M=-L}^{L} (r_{M}^{L})^{2}}$$

CP violation in hyperon systems

- CP violation of baryon system has never been observed.
- The $\overline{p}p \rightarrow YY$ process suitable for CP measurements (clean, no mixing)
- According to experiment, $\alpha = \overline{\alpha}$ for Λ .
- CP violation parameters:

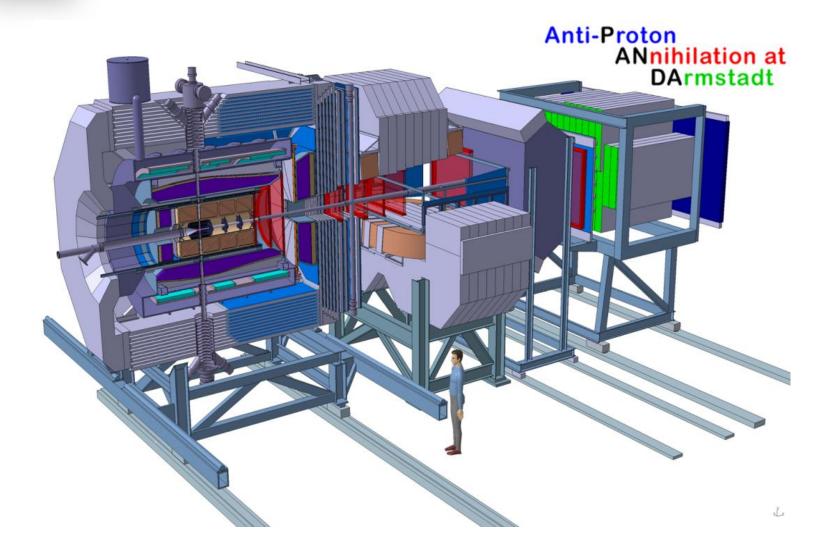
$$A = \frac{\Gamma \alpha + \overline{\Gamma} \overline{\alpha}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \simeq \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}$$
$$B = \frac{\Gamma \beta + \overline{\Gamma} \overline{\beta}}{\Gamma \beta - \overline{\Gamma} \overline{\beta}} \simeq \frac{\beta + \overline{\beta}}{\beta - \overline{\beta}}$$
$$B' = \frac{\Gamma \beta + \overline{\Gamma} \overline{\beta}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \simeq \frac{\beta + \overline{\beta}}{\alpha - \overline{\alpha}}$$


Consistent with 0 for Λ and Ξ , but to confirm or rule out or confirm χ PT, Supersymmetry, more precise measurements are needed.

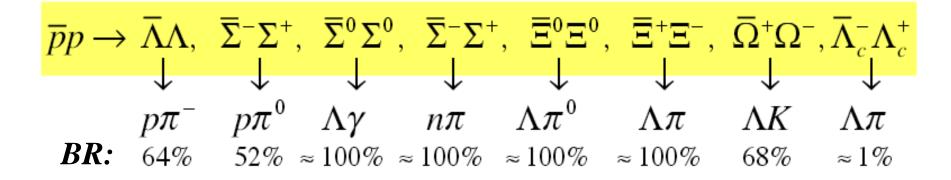
Accessible for Ξ since the polarisation of the decay products can be measured.

No previous measurement.

Previous measurements of $\overline{p}p \rightarrow \overline{Y}Y$


• A lot of data on $\overline{p}p \rightarrow \Lambda\Lambda$ near threshold, mainly from PS185 at LEAR*.

- Very scarce data bank above 4 GeV.
- Only a few bubble chamber events on $\overline{p}p \to \Xi\Xi$
- No data on $\overline{p}p \to \overline{\Omega}\Omega$ nor $\overline{p}p \to \overline{\Lambda}_c\Lambda_c$


* See e.g. T. Johansson, AIP Conf. Proc. Of LEAP 2003, p. 95.

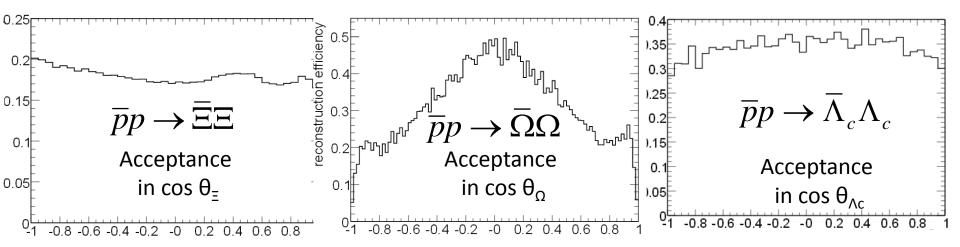
Prospects for PANDA

- Simulation studies using a simplified MC framework (smearing and acceptance included)
- Quoted rates are valid for day one luminosity of the HESR (10³¹ cm⁻² s⁻¹).
- Cross sections of $\overline{p}p \to \overline{\Lambda}\Lambda$ and $\overline{p}p \to \overline{\Lambda}\Sigma^o$ known near threshold, the $\overline{p}p \to \overline{\Xi}^+\Xi^-$ measured with large uncertainty.
- Only theoretical predictions of $\overline{p}p \to \overline{\Omega}^+ \Omega^-$ and $\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$

Momentum (GeV/c)	Reaction	σ (µb)	Efficiency (%)	Rate (with 10 ³¹ cm ⁻¹ s ⁻¹)
1.64	$\overline{p}p \to \overline{\Lambda}\Lambda$	64	10	28 s ⁻¹
4	$\overline{p}p \to \overline{\Lambda}\Sigma^o$	~40	30	30 s ⁻¹
4	$\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$	~2	20	1.5 s ⁻¹
12	$\overline{p}p \rightarrow \overline{\Omega}^+ \Omega^-$	~0.002	30	~4 h ⁻¹
12	$\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$	~0.1	35	~2 day ⁻¹

- High event rates for Λ and Σ *.
- Low background for Λ and Σ *.
- Even with conservative cross section estimates, Ω and Λ_c channels are feasible. **
- New efficiencies obtained with a more sophisticated MC framework are underway.
 *Sophie Grape, Ph. D. Thesis, Uppsala University 2009
 ** Erik Thomé, Ph. D. Thesis, Uppsala University 2012

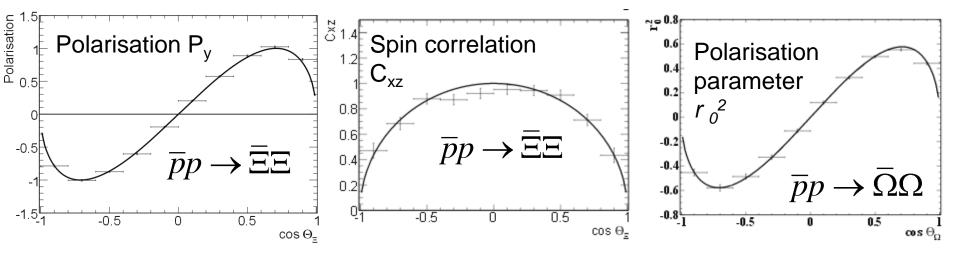
Momentum (GeV/c)	Reaction	σ (µb)	Efficiency (%)	Rate (with10 ³¹ cm ⁻¹ s ⁻¹)
1.64	$\overline{p}p \to \overline{\Lambda}\Lambda$	64	10	14 s ⁻¹
4	$\overline{p}p \rightarrow \overline{\Lambda}\Sigma^{o}$	~40	30	15 s ⁻¹
4	$\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$	~2	20	0.8 s ⁻¹
12	$\overline{p}p \rightarrow \overline{\Omega}^+ \Omega^-$	~0.002	30	~2 h ⁻¹
12	$\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$	~0.1	35	~1 day ⁻¹
				7


- High event rates for Λ and Σ *.
- Low background for Λ and Σ *.

Gain a factor of 100 with inclusive measurement

- Even with conservative cross section estimates, Ω and Λ_c channels are feasible. **
- New efficiencies obtained with a more sophisticated MC framework are underway.
 *Sophie Grape, Ph. D. Thesis, Uppsala University 2009
 ** Erik Thomé, Ph. D. Thesis, Uppsala University 2012

Good angular acceptance also for heavy hyperons \rightarrow important for polarisarion studies!


Results by Erik Thomé, Ph. D. Thesis, Uppsala University (2012).

UPPSALA UNIVERSITET

Prospects for PANDA at FAIR

- Parametrisation of spin variables using weights:
 - $P_{\Xi,y} = \sin 2\theta_{\Xi} \qquad C_{\Xi,xz} = \sin \theta_{\Xi} \qquad r_0^2 = \sin 2\theta_{\Omega} / \sqrt{3}$
- Simplifies MC framework including acceptance and detector resolution.

• The polarisation and spin correlations for Ξ and polarisation parameters of the Ω can be well reconstructed with PANDA.

Results by Erik Thomé, Ph. D. Thesis, Uppsala University (2012).

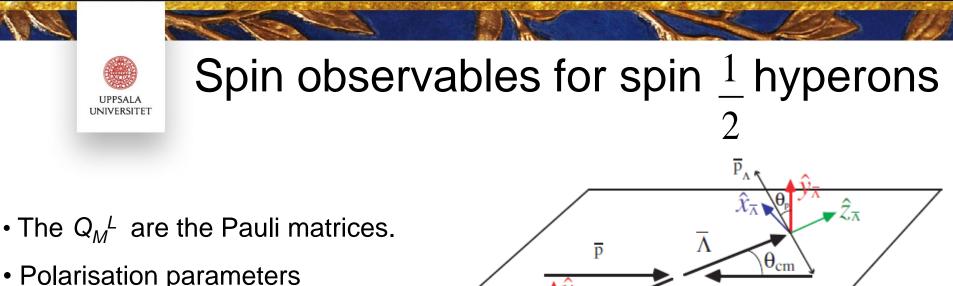
Summary

- Strange hyperons probe the Strong Interaction in the confinement domain.
- Several open questions in baryon spectroscopy show that there is much more to learn on how quarks interact inside baryons.
- What happens if light quarks are replaced with heavier? Very little is known about the excited strange hyperon spectra.
- PANDA can fill a gap in the strange sector

Thanks to: Albrecht Gillitzer, Stefan Leupold, Sophie Grape, Tord Johansson and Erik Thomé

Summary and Outlook

- Production of strange and charmed hyperons probe QCD at two different energy scales.
- Polarisation parameters of $p\overline{p} \rightarrow \Omega\overline{\Omega}$ have been derived.
- Simulation studies show excellent prospects for antihyperon-hyperon channels with PANDA.


Thanks to: Albrecht Gillitzer, Stefan Leupold, Sophie Grape, Tord Johansson and Erik Thomé

Backup

• Polarisation parameters r_0^1 , r_{-1}^1 and r_1^1 are P_x , P_y and P_z .

The spin density matrix of one spin $\frac{1}{2}$ particle is given by:

$$\rho(1/2) = \frac{1}{2}(\mathscr{I} + \bar{P} \cdot \bar{\sigma}) = \frac{1}{2} \begin{bmatrix} 2 + P_z & P_x + iP_y \\ P_x - iP_y & 1 - P_z \end{bmatrix}$$

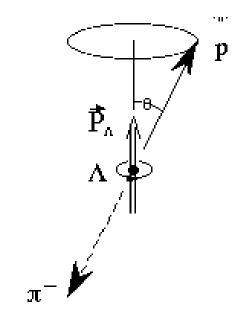
Symmetry from parity conservation (strong production) requires $P_x = P_z = 0 \rightarrow$

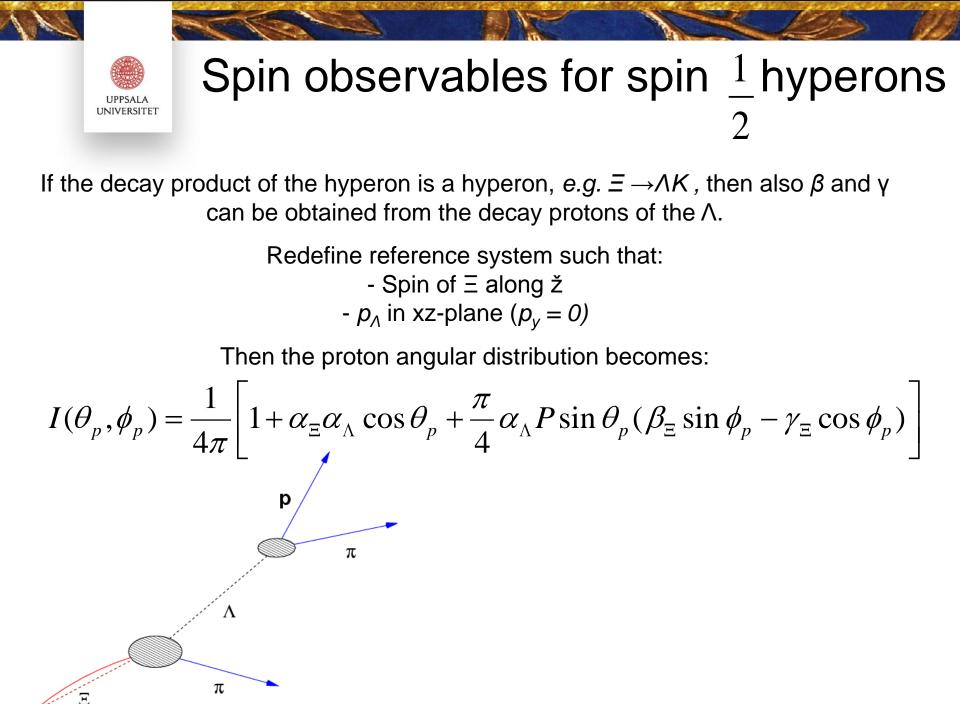
$$\rho(1/2) = \frac{1}{2} \begin{bmatrix} 1 & iP_y \\ -iP_y & 1 \end{bmatrix}$$
 Polarisation normal to the production plane!

Parity violating decay \rightarrow direction of the decay products depends on the polarisation of the mother hyperon.

Angular distribution of the final state is given by $I(\theta, \varphi) = Tr(T\rho T^*)$

Decay matrix T consists of


 T_s (s-wave, parity violating) and T_{p} (p-wave, parity conserving)


$$\alpha = 2\text{Re}(T_s^*T_p)$$

Define: $\beta = 2\text{Im}(T_s^*T_p)$
 $\gamma = |T_s|^2 - |T_p|^2$

Then $\alpha^2 + \beta^2 + \gamma^2 = |T_s|^2 + |T_p|^2 = 1$

and the decay angular distribution becomes

 $I(\cos\theta_{\rm p}) = N(1 + \alpha P_{\rm Y} \cos\theta_{\rm p})$

UPPSALA UNIVERSITET

₽,

Λ

Spin observables for spin $\frac{1}{2}$ hyperons

Method of Moments

The expectation value or the moment of a function g(x) can be written $\langle g(x) \rangle = \int_{\Omega} g(x) f(x \mid \theta) dx$

p where $f(x|\theta)$ is a probability density function.

Example: A hyperon with polarisation P_n decaying into $p \pi^2$. Then dN

$$f(\theta_p \mid P_n) = \frac{an}{d\cos\theta_p} \propto 1 + \alpha_{\Lambda} P_n \cos\theta_p$$

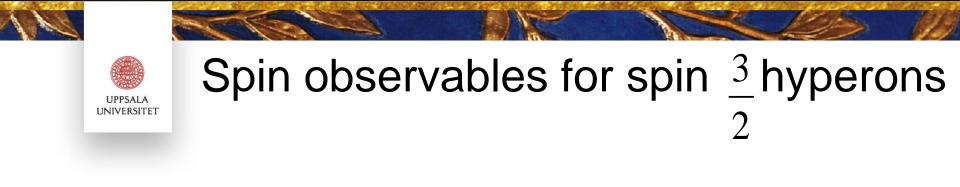
and thus

$$\langle \cos \theta_p \rangle = \int \frac{dN}{d \cos \theta_p} \cos \theta_p d \cos \theta_p = \int (1 + \alpha_\Lambda P_n \cos \theta_p) \cos \theta_p d \cos \theta_p = \frac{\alpha_\Lambda P_n}{3}$$
which means that the polarisation can be expressed as $P_n = \frac{3}{\alpha_\Lambda} \langle \cos \theta_p \rangle$

CP violation in hyperon systems

- CP violation of baryon system has never been observed.
- The $\overline{p}p \rightarrow YY$ process suitable for CP measurements (clean, no mixing)
- According to experiment, $\alpha = \overline{\alpha}$ for Λ .
- CP violation parameters:

$$A = \frac{\Gamma \alpha + \overline{\Gamma} \overline{\alpha}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \simeq \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}$$

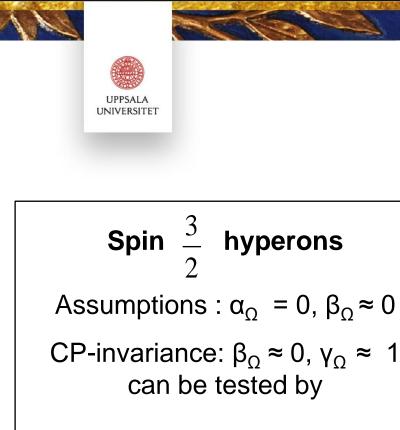

Consistent with 0 for Λ and Ξ , but to confirm or rule out or confirm χ PT, Supersymmetry , more precise measurements are needed.

$$B = \frac{\Gamma\beta + \overline{\Gamma}\overline{\beta}}{\Gamma\beta - \overline{\Gamma}\overline{\beta}} \simeq \frac{\beta + \overline{\beta}}{\beta - \overline{\beta}}$$

Accessible for Ξ since the polarisation of the decay products can be measured.

$$B' = \frac{\Gamma\beta + \overline{\Gamma}\overline{\beta}}{\Gamma\alpha - \overline{\Gamma}\overline{\alpha}} \simeq \frac{\beta + \overline{\beta}}{\alpha - \overline{\alpha}}$$

No previous measurement.


This case much more complicated.

Erik Thomé has derived the observables in his Ph. D. thesis.*

The spin density matrix is given by

$$\begin{split} \rho(3/2) &= \\ &= \frac{1}{4} \begin{bmatrix} 1 + \sqrt{3}r_0^2 & i\frac{3}{\sqrt{5}}r_{-1}^1 - \sqrt{3}r_1^2 & \sqrt{3}r_2^2 - i\sqrt{3}r_{-2}^3 & -i\sqrt{6}r_{-3}^3 \\ -i\frac{3}{\sqrt{5}}r_{-1}^1 - \sqrt{3}r_1^2 & 1 - \sqrt{3}r_0^2 & i2\sqrt{\frac{3}{5}}r_{-1}^1 + i3\sqrt{\frac{2}{5}}r_{-1}^3 & \sqrt{3}r_2^2 + i\sqrt{3}r_{-2}^3 \\ \sqrt{3}r_2^2 + i\sqrt{3}r_{-2}^3 & -i2\sqrt{\frac{3}{5}}r_{-1}^1 - i3\sqrt{\frac{2}{5}}r_{-1}^3 & 1 - \sqrt{3}r_0^2 & i\frac{3}{\sqrt{5}}r_{-1}^1 + \sqrt{3}r_1^2 \\ i\sqrt{6}r_{-3}^3 & \sqrt{3}r_2^2 - i\sqrt{3}r_{-2}^3 & -i\frac{3}{\sqrt{5}}r_{-1}^1 + \sqrt{3}r_1^2 & 1 + \sqrt{3}r_0^2 \end{bmatrix}$$

*Erik Thomé, Multistrange and Charmed Antihyperon-Hyperon Physics for PANDA Ph. D. Thesis, Uppsala University (2012)

$$\frac{\beta_{\Omega}}{\gamma_{\Omega}} = \frac{\langle \cos \theta_p \sin \phi_p \rangle}{\langle \sin \theta_p \sin \phi_p \rangle}$$

Joint Angular Distribution of the Two Decays

$$\begin{split} \langle (3\cos\Theta_{\Lambda}-1)\sin\phi_{p} \rangle &= \\ &= \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\pi} I(\Theta_{\Lambda},\phi_{\Lambda},\Theta_{p},\phi_{p}) \times \\ \sin\Theta_{\Lambda}(3\cos\Theta_{\Lambda}-1)\sin\Theta_{p}\sin\phi_{p}d\Theta_{\Lambda}d\phi_{\Lambda}d\Theta_{p}d\phi_{p} = \\ &= -\frac{3\pi\alpha_{\Lambda}\gamma_{\Omega}r_{-1}^{1}}{20\sqrt{10}} \\ \langle (15\cos\Theta_{\Lambda}-1)\sin\phi_{p} \rangle = \\ &= \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\pi} I(\Theta_{\Lambda},\phi_{\Lambda},\Theta_{p},\phi_{p}) \times \\ \sin\Theta_{\Lambda}(15\cos\Theta_{\Lambda}-1)\sin\Theta_{p}\sin\phi_{p}d\Theta_{\Lambda}d\phi_{\Lambda}d\Theta_{p}d\phi_{p} = \\ &= \frac{\sqrt{3}\pi\alpha_{\Lambda}\gamma_{\Omega}r_{-1}^{3}}{2\sqrt{5}} \\ \langle \sin\phi_{\Lambda}\cos\phi_{p} \rangle = \\ &= \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\pi} I(\Theta_{\Lambda},\phi_{\Lambda},\Theta_{p},\phi_{p}) \times \\ \sin\Theta_{\Lambda}\sin\Theta_{p}\sin\phi_{\Lambda}\cos\phi_{p}d\Theta_{\Lambda}d\phi_{\Lambda}d\Theta_{p}d\phi_{p} = \\ &= -\frac{3\pi^{2}\alpha_{\Lambda}\gamma_{\Omega}r_{-2}^{3}}{1024} \\ \langle \sin\phi_{\Lambda}\cos\phi_{\Lambda}\sin\phi_{p} \rangle = \\ &= \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\pi} I(\Theta_{\Lambda},\phi_{\Lambda},\Theta_{p},\phi_{p}) \times \\ \sin\Theta_{\Lambda}\sin\Theta_{p}\sin\phi_{\Lambda}\cos\phi_{\Lambda}\sin\phi_{p}d\Theta_{\Lambda}d\phi_{\Lambda}d\Theta_{p}d\phi_{p} = \\ &= -\frac{\pi\alpha_{\Lambda}\gamma_{\Omega}}{640} \left(5\sqrt{6}r_{-3}^{3} - 4\sqrt{15}r_{-1}^{3} - 3\sqrt{10}r_{-1}^{1} \right) \end{split}$$