

Baryon Physics with PANDA

Karin Schönning, Uppsala University, on behalf of the Hyperon Physics Working Group, PANDA

PANDA Physics Workshop, June 9-10th Uppsala, Sweden

Outline

- Introduction
- Part I: Baryon Spectroscopy
 - Baryons and the quark model
 - Light baryons
 - Strange hyperons
 - Prospects for PANDA
- Part II: Spin observables in $pp \to \bar{Y}Y$
 - Spin 1 hyperons
 - Spin ²/₃ hyperons
 - CP violation
 - Previous measurements of $\overline{p}p \to \overline{Y}Y$
 - Prospects for PANDA

Introduction

- Light quark (u, d) systems:
 - Highly non-perturbative interactions.
 - Relevant degrees of freedom are hadrons.
- Systems with strangeness
 - Scale: m_s ≈ 100 MeV ~ Λ_{QCD} ≈ 200 MeV.
 - Relevant degrees of freedom unclear.
 - Probes QCD in the intermediate domain.
- Systems with charm
 - Scale: m_c ≈ 1300 MeV.
 - Quark and gluon degrees of freedom more relevant.
 - By comparing strange and charmed hyperons we learn about QCD at two different energy scales.

Why baryons?

Baryon Spectroscopy

- New baryon states?
- Properties of already known states.
- Symmetries in the observed spectrum?

Why baryons?

Baryon Spectroscopy

- New baryon states?
- Properties of already known states.
- Symmetries in the observed spectrum?

Spin Observables in baryon production / decay

- Reaction mechanism at different energy scales.
- The role of spin in the production of heavy quarks.
- CP violation

Part I: Baryon Spectroscopy

Baryons and the quark model

- 1950's and 1960's: a multitude of new particles discovered → obvious they could not all be elementary
- 1961: Eight-fold way, organising mesons and spin 1 baryons into octets and spin 3 into a decuplet as a consequence of SU(3) flavour symmetry
- 1962: Discovery of the predicted Ω⁻ demonstrates the success of the Eightfold way.

1964: Quark model (Gell-Mann and Zweig)

Baryons and the quark model

- The simple (constituent) quark model* was successful in classifying hadrons and describing some features of the hadron spectra.
- Unable to explain e.g.
 - Spin of the nucleon
 - Flavour asymmetry of the nucleon sea
 - Level ordering in light and strange baryon spectra**

Baryons and the quark model

- The simple (constituent) quark model* was successful in classifying hadrons and describing some features of the hadron spectra.
- Unable to explain e.g.
 - Spin of the nucleon
 - Flavour asymmetry of the nucleon sea
 - Level ordering in light and strange baryon spectra**

The challenging task of baryon spectroscopy

Light baryon spectroscopy

A lot has been lerned from the great progress in light baryon spectroscopy (pion beams, photoproduction).

Open questions regarding the excited light baryon spectrum:*

- Relevant degrees of freedom?
- Missing states
- High mass parity doublets
- Order of low mass
 positive and negative
 parity states
 (Roper and S₁₁(1535))

Light baryon spectroscopy

Missing states: # of observed states < # of predicted states

- Because there are no such states
- or because they do not couple to $N\pi$ final states?

Strange (and charmed) hyperons

What happens if we replace one of the light quarks in the proton with one - or many heavier quark(s)? Xi (Ξ) Lambda (A) Omega (Ω) Sigma (Σ)

Excited strange hyperon spectrum:

- SU(6) x O(3) classification (spin, flavour and L)
- Very scarce data bank on double and triple strangeness
- Octet ≡ partners of N*?
 - Only a few found
- Decuplet Ξ and Ω partners of Δ*?
 - Nothing found

```
(D, L_N^P) S
                                        Octet members
                                                                           Singlets
1/2^{+}
         (56,0^+_0) 1/2 N(939) \Lambda(1116) \Sigma(1193) \Xi(1318)
1/2^{+}
         (56,0^{+}_{2}) 1/2 N(1440) \Lambda(1600) \Sigma(1660) \Xi(?)
         (70,1_1^-) 1/2 N(1535) \Lambda(1670) \Sigma(1620) \Xi(?)
                                                                           \Lambda(1405)
         (70,1_1^-) 1/2 N(1520) \Lambda(1690) \Sigma(1670) \Xi(1820) \Lambda(1520)
         (70,1_1^-) 3/2 N(1650) \Lambda(1800) \Sigma(1750) \Xi(?)
1/2^{-}
3/2^{-}
         (70,1_1^-) 3/2 N(1700) \Lambda(?)
         (70,1_1^-) 3/2 N(1675) \Lambda(1830) \Sigma(1775) \Xi(?)
1/2^{+}
         (70,0^{+}_{2}) 1/2 N(1710) \Lambda(1810) \Sigma(1880) \Xi(?)
                                                                           \Lambda(?)
3/2^{+}
         (56,2^+_2) 1/2 N(1720) \Lambda(1890) \Sigma(?)
5/2^{+}
         (56,2^+_2) 1/2 N(1680) \Lambda(1820) \Sigma(1915) \Xi(2030)
         (70,3_3^-) 1/2 N(2190) \Lambda(?)
                                                               \Xi(?)
                                                                           \Lambda(2100)
         (70,3_3^-) 3/2 N(2250) \Lambda(?)
                                                               \Xi(?)
9/2^{+}
         (56,4_4^+) 1/2 N(2220) \Lambda(2350)
                                                   \Sigma(?)
                                                               \Xi(?)
                                      Decuplet members
         (56,0^+_0) 3/2 \Delta(1232) \Sigma(1385) \Xi(1530) \Omega(1672)
3/2^{+}
         (56,0^+_2) 3/2 \Delta(1600) \Sigma(?)
                                                   \Xi(?)
                                                               \Omega(?)
1/2^{-}
         (70,1_1^-) 1/2 \Delta(1620) \Sigma(?)
                                                   \Xi(?)
                                                               \Omega(?)
         (70,1_1^-) 1/2 \Delta(1700) \Sigma(?)
                                                   \Xi(?)
                                                               \Omega(?)
3/2^{-}
5/2^{+}
                                                   \Xi(?)
                                                               \Omega(?)
         (56,2^+_2) 3/2 \Delta(1905) \Sigma(?)
         (56,2^{+}_{2}) 3/2 \Delta(1950) \Sigma(2030) \Xi(?)
                                                               \Omega(?)
11/2^+ (56,4<sup>+</sup>) 3/2 \Delta(2420) \Sigma(?)
                                                   \Xi(?)
                                                               \Omega(?)
```


- Are the states missing
 - because they are not there
 - or because previous experiments haven't been optimal for multistrange baryon search?
- PDG note on \(\preceq\) hyperons:
 "...nothing of significance on \(\preceq\)
 resonances has been added since our 1988 edition."
- Most previous experiments are performed with kaon beams
 - → difficult to measure double and triple strange states

```
(D, L_N^P) S
                                       Octet members
                                                                        Singlets
1/2^{+}
         (56,0^+_0) 1/2 N(939) \Lambda(1116) \Sigma(1193) \Xi(1318)
1/2^{+}
         (56,0^{+}_{2}) 1/2 N(1440) \Lambda(1600) \Sigma(1660) \Xi(?)
1/2^{-}
         (70,1_1^-) 1/2 N(1535) \Lambda(1670) \Sigma(1620) \Xi(?)
                                                                         \Lambda(1405)
3/2^{-}
         (70,1_1^-) 1/2 N(1520) \Lambda(1690) \Sigma(1670) \Xi(1820) \Lambda(1520)
         (70,1_1^-) 3/2 N(1650) \Lambda(1800) \Sigma(1750) \Xi(?)
3/2^{-}
         (70,1_1^-) 3/2 N(1700) \Lambda(?)
                                                             \Xi(?)
         (70,1_1^-) 3/2 N(1675) \Lambda(1830) \Sigma(1775) \Xi(?)
5/2^{-}
1/2^{+}
         (70,0^{+}_{2}) 1/2 N(1710) \Lambda(1810) \Sigma(1880) \Xi(?)
                                                                        \Lambda(?)
3/2^{+}
         (56,2^{+}_{2}) 1/2 N(1720) \Lambda(1890) \Sigma(?)
         (56,2^+_2) 1/2 N(1680) \Lambda(1820) \Sigma(1915) \Xi(2030)
         (70,3_3^-) 1/2 N(2190) \Lambda(?)
                                                             \Xi(?)
                                                                        \Lambda(2100)
                                                 \Sigma(?)
9/2^{-}
         (70,3_3^-) 3/2 N(2250) \Lambda(?)
                                                             \Xi(?)
                                                 \Sigma(?)
9/2^{+}
         (56,4_4^+) 1/2 N(2220) \Lambda(2350)
                                                 \Sigma(?)
                                     Decuplet members
```

 $(56,0^+_0)$ 3/2 $\Delta(1232)$ $\Sigma(1385)$ $\Xi(1530)$ $\Omega(1672)$

 $\Xi(?)$

 $\Xi(?)$

 $\Xi(?)$

 $\Xi(?)$

 $\Xi(?)$

 $\Omega(?)$

 $\Omega(?)$

 $\Omega(?)$

 $\Omega(?)$

 $\Omega(?)$

 $\Omega(?)$

 $(56,0^+_2)$ 3/2 $\triangle(1600)$ $\Sigma(?)$

 $(70,1_1^-)$ 1/2 $\Delta(1620)$ $\Sigma(?)$

 $(70,1_1^-)$ 1/2 $\Delta(1700)$ $\Sigma(?)$

 $(56,2^+_2)$ 3/2 $\Delta(1905)$ $\Sigma(?)$

 $11/2^+$ (56,4⁺) 3/2 Δ (2420) Σ (?)

 $(56,2^+_2)$ 3/2 $\Delta(1950)$ $\Sigma(2030)$ $\Xi(?)$

3/2⁺ 3/2⁺

 $1/2^{-}$

 $3/2^{-}$

 $5/2^{+}$

- A lot of previous and ongoing activity in light baryon spectroscopy (CLAS @ JLAB, CBELSA/TAPS)
- Charmed baryons often bi-product at b-factories (BaBar, Belle, CLEO, LHCb)
 - PANDA can fill the gap in the strange sector
 - \rightarrow the full Ξ and Ω spectra are accessible with PANDA!

- Antiprotons from HESR with momenta 1.5 -15 GeV/c.
- Unpolarised beam and target
- Near 4π coverage
- Good momentum and vertex resolution.
- PID
- EM calorimetry

- Large cross sections for $\overline{p}p \to \overline{Y}Y^*$
 - $-\overline{p}p \to \overline{\Xi}\Xi \approx \mu b$
 - $-\overline{p}p \rightarrow \overline{\Omega}\Omega \approx 0.03 0.1 \mu b$
- No extra mesons in the final state needed for strangeness (or charm) conservation
- Symmetry in hyperon and antihyperon observables
- PANDA detector versatile (coverage, resolution, PID...)

PANDA is a unique experiment in baryon spectroscopy beyond *N** and Δ!

Feasibility study of $\overline{p}p \to \Xi\Xi^*$

- $p_{beam} = 6.57 \text{ GeV/c}$
- 10⁷ MC events produced
- Consider the $\Xi^{-*} \to \Xi^{-} \pi^{0}$ decay
- Background generated with DPM
- Simple MC framework taking efficiencies and detector resolution into account
- Results*:
 - 10-20% efficiency
 - Smooth efficiency
 - S/B > 19

Baryon spectroscopy subtopics with PANDA

Study excited states of

- double-strange hyperons (Ξ*)
- □ triple-strange hyperons (Ω^*)
- charmed hyperons $(\Lambda_c^*, \Sigma_c^*)$
- hidden-charm nucleons $(N_{c\bar{c}})$
- non-strange baryons (N^*)
- single-strange hyperons (Λ^*, Σ^*)

Part II: Spin Observables in Hyperon production

Or: what can we learn from looking into detail how known hyperons are produced?

Strange and charm production

Models based on the constituent quark-gluon picture* and on the hadron picture** or a combination of the two ***

Different models give different predictions of *e.g.*

- the polarisation of the outgoing hyperon
- the correlation of the spin of the hyperonantihyperon

```
\bar{p}
\bar{q}
```


*PLB 179 (1986) 15; PLB 165 (1985) 187; NPA 468 (1985) 669; ** PRC 31(1985) 1857; PLB179 (1986) 15; PLB 214 (1988) 317; *** PLB 696 (2011) 352.

Spin observables in $\overline{p}p \rightarrow YY$

Spin observables are powerful tools in testing models. The spin density matrix ρ of a particle with arbitrary spin j is given by

$$\rho = \frac{1}{2j+1} \mathscr{I} + \sum_{L=1}^{2j} \rho^L \quad \text{with} \qquad \rho^L = \frac{2j}{2j+1} \sum_{M=-L}^L Q_M^L r_M^L$$
 Unpolarised Polarised

where Q_M^L are hermitian matrices and r_M^L polarisation parameters.

- Spin $\frac{1}{2}$: 3 polarisation parameters: r_{-1}^{1} , r_{0}^{1} and r_{1}^{1} .
- Spin $\frac{3}{2}$: **15** polarisation parameters: r_{-1}^{1} , r_{0}^{1} , r_{1}^{1} , r_{-2}^{2} , r_{-1}^{2} , r_{0}^{2} , r_{1}^{2} , r_{2}^{2} , r_{-3}^{3} , r_{0}^{3} , r_{1}^{3} , r_{2}^{3} and r_{3}^{3} .
- Degree of polarisation given by: $d(\rho) = \sqrt{\sum_{L=1}^{2j} \sum_{M=-L}^{L} (r_M^L)^2}$

Spin observables for spin $\frac{1}{2}$ hyperons

- The Q_M^L from $\rho^L = \frac{2j}{2j+1} \sum_{M=-I}^L Q_M^L r_M^L$ are the Pauli matrices.
- Polarisation parameters r_0^1 , r_{-1}^1 and r_1^1 denoted P_x , P_y and P_z .
- Symmetry from parity conservation (strong production) requires $P_x = P_z = 0$

→ polarisation normal of the production plane!

Spin observables for spin $\frac{1}{2}$ hyperons

Hyperons decay weakly:

→ decay matrix has one parity conserving part and one parity violating part.

Parity violating:

→ daughter particles are according to the polarisation of the mother hyperon.

Angular distribution is given by

$$I(\cos\theta_{\rm p}) = N(1 + \alpha P_{\rm Y} \cos\theta_{\rm p})$$

 α : decay parameter related to the decay matrix.

→ The polarisation is accessible by the angular distribution of the decay products!

Spin observables for spin $\frac{1}{2}$ hyperons

Polarised Particle	None	Beam	Target	Both
None	I_{0000}	A_{i000}	A_{0j00}	A_{ij00}
Scattered	$P_{00\mu0}$	$D_{i0\mu0}$	$K_{0j\mu0}$	$M_{ij\mu 0}$
Recoil	$P_{000\nu}$	$K_{i00\nu}$	D_{0j0v}	$N_{ij0\nu}$
Both	$C_{00\mu\nu}$	$C_{i0\mu\nu}$	$C_{0j\mu\nu}$	$C_{ij\mu\nu}$

In the $\overline{p}p \to YY$ reaction there are 256 spin variables.

Unpolarised beam and unpolarised target, the polarisation P_{00y0} and P_{000y} and the spin correlations $C_{00v\mu}$ (v,µ = x,y,z) are accessible.

Spin observables for spin $\frac{3}{2}$ hyperons

The $p\overline{p} \to \Omega\overline{\Omega}$ reaction:

15 polarisation parameters, **7** are accessible in $\Omega \rightarrow \Lambda$ K with an unpolarised beam and target.

3 polarisation parameters r_2^2 , r_1^2 , r_0^2 can be retrieved from the angular distribution of the Λ^* , assuming $\alpha_0 = 0$ consistent with experiment.**

$$r_0^2 = \frac{15}{2\sqrt{3}} \left(\frac{1}{3} - \langle \cos^2 \theta_{\Lambda} \rangle \right)$$

$$r_2^2 = \frac{8}{3} \left(1 - \langle \cos^2 \theta_{\Lambda} \rangle - 2 \langle \sin^2 \theta_{\Lambda} \sin^2 \phi_{\Lambda} \rangle \right)$$

$$r_1^2 = 5 \langle \cos \theta_{\Lambda} \sin \theta_{\Lambda} \cos \phi_{\Lambda} \rangle$$

**Erik Thomé, Multistrange and Charmed Antihyperon-Hyperon Physics for PANDA Ph. D. Thesis, Uppsala University (2012) ** PDG, J. Phys. G 33 (2006) 1.

Spin observables for spin $\frac{3}{2}$ hyperons

Four polarisation parameters can be determined from the joint angular distributions of the Λ and the proton *:

$$r_{-1}^{1} = -\frac{20\sqrt{10}\langle(3\cos\theta_{\Lambda}) - 1\rangle\sin\phi_{p}\rangle}{3\pi\alpha_{\Lambda}\gamma_{\Omega}}$$

$$r_{-1}^{3} = \frac{2\sqrt{5}\langle(15\cos\theta_{\Lambda} - 1)\sin\phi_{p}\rangle}{\sqrt{3}\pi\alpha_{\Lambda}\gamma_{\Omega}}$$

$$r_{-2}^{3} = -\frac{1024\langle\sin\phi_{\Lambda}\cos\phi_{p}\rangle}{3\pi^{2}\alpha_{\Lambda}\gamma_{\Omega}}$$

$$r_{-3}^{3} = -\frac{1}{5\sqrt{6}}(\frac{640}{\pi\alpha_{\Lambda}\gamma_{\Omega}}\langle\sin\phi_{\Lambda}\cos\phi_{\Lambda}\sin\phi_{p}\rangle + 4\sqrt{15}r_{-1}^{3} + 3\sqrt{10}r_{-1}^{1})$$

 α , β , γ decay parameters.

Assume: $\alpha_{\Omega} = 0$, $\beta_{\Omega} \approx 0$

*Erik Thomé, Ph. D. Thesis and later work

Spin observables in $\overline{p}p \rightarrow YY$

- Spin $\frac{1}{2}$ hyperons $(\Lambda, \Xi, \Lambda_c)$:
 - Polarisation.
 - Spin correlations and singlet fraction:

$$SF = \frac{1}{4}(1 + C_{xx} - C_{yy} + C_{zz})$$

- Spin $\frac{3}{2}$ hyperons into spin $\frac{1}{2}$ hyperons ($\Omega \rightarrow \Lambda K$):
 - 7 polarisation parameters + degree of polarisation.

$$d(\rho) = \sqrt{\sum_{L=1}^{2j} \sum_{M=-L}^{L} (r_{M}^{L})^{2}}$$

CP violation in hyperon systems

- CP violation of baryon system has never been observed.
- The $\overline{p}p \to YY$ process suitable for CP measurements (clean, no mixing)
- According to experiment, $\alpha = \overline{\alpha}$ for Λ .
- CP violation parameters:

$$A = \frac{\Gamma \alpha + \overline{\Gamma} \overline{\alpha}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \square \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}$$

Consistent with 0 for Λ and Ξ , but to confirm $A = \frac{\Gamma \alpha + \Gamma \overline{\alpha}}{\Gamma \overline{\alpha}} \square \frac{\alpha + \overline{\alpha}}{\overline{\alpha}} \quad \text{or rule out or confirm } \text{xPT, Supersymmetry },$ more precise measurements are needed.

$$B = \frac{\Gamma \beta + \overline{\Gamma} \overline{\beta}}{\Gamma \beta - \overline{\Gamma} \overline{\beta}} \square \frac{\beta + \overline{\beta}}{\beta - \overline{\beta}}$$

Accessible for Ξ since the polarisation of the decay products can be measured.

$$B' = \frac{\Gamma \beta + \overline{\Gamma} \overline{\beta}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \square \frac{\beta + \overline{\beta}}{\alpha - \overline{\alpha}} \quad \text{No previous measurement.}$$

Previous measurements of $\overline{p}p \to YY$

- A lot of data on $\overline{p}p \to \overline{\Lambda}\Lambda$ near threshold, mainly from PS185 at LEAR*.
- Very scarce data bank above 4 GeV.
- Only a few bubble chamber events on $\overline{p}p \to \overline{\Xi}\Xi$
- No data on $\overline{p}p \to \overline{\Omega}\Omega$ nor $\overline{p}p \to \overline{\Lambda}_c\Lambda_c$

^{*} See e.g. T. Johansson, AIP Conf. Proc. Of LEAP 2003, p. 95.

Previous measurements of $\overline{p}p \to YY$

 $ullet \Lambda\Lambda$ almost always produced in a spin triplet state*:

$$SF = \frac{1}{4}(1 + C_{xx} - C_{yy} + C_{zz})$$

 Neither the quark-gluon picture (dotted) nor hadron exchange (solid and dashed) describe polarisation data perfectly. **

> *PRC 54 (1996) 1877 ** Phys. Rep. 368 (2002) 119.

$$\overline{p}p \to \overline{\Lambda}\Lambda, \quad \overline{\Sigma}^{-}\Sigma^{+}, \quad \overline{\Sigma}^{0}\Sigma^{0}, \quad \overline{\Sigma}^{-}\Sigma^{+}, \quad \overline{\Xi}^{0}\Xi^{0}, \quad \overline{\Xi}^{+}\Xi^{-}, \quad \overline{\Omega}^{+}\Omega^{-}, \overline{\Lambda}_{c}^{-}\Lambda_{c}^{+}$$

$$p\pi^{-} \quad p\pi^{0} \quad \Lambda\gamma \quad n\pi \quad \Lambda\pi^{0} \quad \Lambda\pi \quad \Lambda K \quad \Lambda\pi$$

$$BR: \quad 64\% \quad 52\% \approx 100\% \approx 100\% \approx 100\% \approx 100\% \approx 100\% \approx 100\%$$

- Simulation studies using a simplified MC framework (smearing and acceptance included)
- Quoted rates are valid for high luminosity mode of the HESR (2*10³² cm⁻² s⁻¹).
- Cross sections of $\overline{p}p \to \overline{\Lambda}\Lambda$ and $\overline{p}p \to \overline{\Lambda}\Sigma^o$ known near threshold, the $\overline{p}p \to \overline{\Xi}^+\Xi^-$ measured with large uncertainty.
- Only theoretical predictions of $\overline{p}p o \overline{\Omega}^{\scriptscriptstyle +}\Omega^{\scriptscriptstyle -}$ and $\;\overline{p}p o \overline{\Lambda}_c^{\scriptscriptstyle -}\Lambda_c^{\scriptscriptstyle +}$

Prospects for PANDA

Momentum (GeV/c)	Reaction	σ (μb)	Efficiency (%)	Rate (high lumi. mode)
1.64	$\overline{p}p \to \overline{\Lambda}\Lambda$	64	10	580 s ⁻¹
4	$\overline{p}p \to \overline{\Lambda}\Sigma^o$	~40	30	600 s ⁻¹
4	$\overline{p}p o \overline{\Xi}^+\Xi^-$	~2	20	30 s ⁻¹
12	$\overline{p}p o \overline{\Omega}^+ \Omega^-$	~0.002	30	~80 h ⁻¹
12	$\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$	~0.1	35	~25 day ⁻¹

- High event rates for Λ and Σ *.
- Low background for Λ and Σ*.
- Even with conservative cross section estimates, Ω and Λ_c channels are feasible. **
- New efficiencies obtained with a more sophisticated MC framework are underway.
 *Sophie Grape, Ph. D. Thesis, Uppsala University 2009

** Erik Thomé, Ph. D. Thesis, Uppsala University 2012

Prospects for PANDA

Good angular acceptance also for heavy hyperons → important for polarisarion studies!

Results by Erik Thomé, Ph. D. Thesis, Uppsala University (2012).

Prospects for PANDA at FAIR

• Parametrisation of spin variables using weights:

$$P_{\Xi,y} = \sin 2\theta_{\Xi}$$
 $C_{\Xi,xz} = \sin \theta_{\Xi}$ $r_0^2 = \sin 2\theta_{\Omega}/\sqrt{3}$

Simplifies MC framework including acceptance and detector resolution.

• The polarisation and spin correlations for Ξ and polarisation parameters of the Ω can be well reconstructed with PANDA.

Results by Erik Thomé, Ph. D. Thesis, Uppsala University (2012).

Summary and Outlook

- Strange hyperons probe the Strong Interaction in the confinement domain.
- Several open questions in baryon spectroscopy show that there is much more to learn on how quarks interact inside baryons.
- What happens if light quarks are replaced with heavier? Very little is known about the excited strange hyperon spectra.
- PANDA can fill a gap in the strange sector
- Production of strange and charmed hyperons probe QCD at two different energy scales.
- Polarisation parameters of $p\overline{p} \to \Omega\Omega$ have been derived.
- Simulation studies show excellent prospects for antihyperon-hyperon channels with PANDA.

Thanks to: Albrecht Gillitzer, Stefan Leupold, Sophie Grape, Tord Johansson and Erik Thomé

Backup

Spin observables for spin $\frac{1}{2}$ hyperons

- The Q_M^L are the Pauli matrices.
- Polarisation parameters r_0^1 , r_{-1}^1 and r_1^1 are P_x , P_y and P_z .

The spin density matrix of one spin $\frac{1}{2}$ particle is given by:

$$\rho(1/2) = \frac{1}{2} (\mathscr{I} + \bar{P} \cdot \bar{\sigma}) = \frac{1}{2} \begin{bmatrix} 1 + P_z & P_x + iP_y \\ P_x - iP_y & 1 - P_z \end{bmatrix}$$

Symmetry from parity conservation (strong production) requires $P_x = P_z = 0 \rightarrow$

$$\rho(1/2) = \frac{1}{2} \begin{bmatrix} 1 & iP_y \\ -iP_y & 1 \end{bmatrix}$$

Polarisation normal to the production plane!

Spin observables for spin $\frac{1}{2}$ hyperons

Parity violating decay → direction of the decay products depends on the polarisation of the mother hyperon.

Angular distribution of the final state is given by $I(\theta, \varphi) = Tr(T\rho T^*)$

Decay matrix T consists of

 T_s (s-wave, parity conserving) and $T_{p.}$ (p-wave, parity violating)

$$\alpha = 2\text{Re}(T_s^*T_p)$$
 Define:
$$\beta = 2\text{Im}(T_s^*T_p)$$

$$\gamma = |T_s|^2 - |T_p|^2$$

Then
$$\alpha^2 + \beta^2 + \gamma^2 = |T_s|^2 + |T_p|^2 = 1$$

and the decay angular distribution becomes

$$I(\cos\theta_{\rm p}) = N(1 + \alpha P_{\rm Y} \cos\theta_{\rm p})$$

π

Spin observables for spin $\frac{1}{2}$ hyperons

If the decay product of the hyperon is a hyperon, $e.g. \equiv \to \Lambda K$, then also β and γ can be obtained from the decay protons of the Λ .

Redefine reference system such that:

- Spin of
$$\Xi$$
 along \check{z}
- p_{Λ} in xz-plane ($p_{V} = 0$)

Then the proton angular distribution becomes:

$$I(\theta_{p}, \phi_{p}) = \frac{1}{4\pi} \left[1 + \alpha_{\Xi} \alpha_{\Lambda} \cos \theta_{p} + \frac{\pi}{4} \alpha_{\Lambda} P \sin \theta_{p} (\beta_{\Xi} \sin \phi_{p} - \gamma_{\Xi} \cos \phi_{p}) \right]$$

Spin observables for spin $\frac{1}{2}$ hyperons

Method of Moments

The expectation value or the moment of a function g(x) can be written

$$\langle g(x) \rangle = \int_{\Omega} g(x) f(x \mid \theta) dx$$

where $f(x|\theta)$ is a probability density function.

Example: Λ hyperon with polarisation P_n decaying into p π -. Then

$$f(\theta_p \mid P_n) = \frac{dN}{d\cos\theta_p} \propto 1 + \alpha_{\Lambda} P_n \cos\theta_p$$

and thus
$$\langle \cos \theta_p \rangle = \int \frac{dN}{d\cos \theta_p} \cos \theta_p d\cos \theta_p = \int (1 + \alpha_\Lambda P_n \cos \theta_p) \cos \theta_p d\cos \theta_p = \frac{\alpha_\Lambda P_n}{3}$$
which means that the polarisation can be expressed as $P = \frac{3}{3} \langle \cos \theta_p \rangle$

which means that the polarisation can be expressed as $P_n = \frac{3}{\alpha_{\perp}} \langle \cos \theta_p \rangle$

CP violation in hyperon systems

- CP violation of baryon system has never been observed.
- The $\overline{p}p \to YY$ process suitable for CP measurements (clean, no mixing)
- According to experiment, $\alpha = \overline{\alpha}$ for Λ .
- CP violation parameters:

$$A = \frac{\Gamma \alpha + \overline{\Gamma} \overline{\alpha}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \square \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}$$

Consistent with 0 for Λ and Ξ , but to confirm $A = \frac{\Gamma \alpha + \Gamma \overline{\alpha}}{\Gamma \overline{\alpha}} \square \frac{\alpha + \overline{\alpha}}{\overline{\alpha}} \text{ or rule out or confirm } \chi PT, \text{ Supersymmetry },$ more precise measurements are needed.

$$B = \frac{\Gamma \beta + \overline{\Gamma} \overline{\beta}}{\Gamma \beta - \overline{\Gamma} \overline{\beta}} \square \frac{\beta + \overline{\beta}}{\beta - \overline{\beta}}$$

Accessible for Ξ since the polarisation of the decay products can be measured.

$$B' = \frac{\Gamma \beta + \overline{\Gamma} \overline{\beta}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \square \frac{\beta + \overline{\beta}}{\alpha - \overline{\alpha}} \quad \text{No previous measurement.}$$

Spin observables for spin $\frac{3}{2}$ hyperons

This case much more complicated.

Erik Thomé has derived the observables in his Ph. D. thesis.*

The spin density matrix is given by

$$\rho(3/2) = \begin{bmatrix} 1 + \sqrt{3}r_0^2 & i\frac{3}{\sqrt{5}}r_{-1}^1 - \sqrt{3}r_1^2 & \sqrt{3}r_2^2 - i\sqrt{3}r_{-2}^3 & -i\sqrt{6}r_{-3}^3 \\ -i\frac{3}{\sqrt{5}}r_{-1}^1 - \sqrt{3}r_1^2 & 1 - \sqrt{3}r_0^2 & i2\sqrt{\frac{3}{5}}r_{-1}^1 + i3\sqrt{\frac{2}{5}}r_{-1}^3 & \sqrt{3}r_2^2 + i\sqrt{3}r_{-2}^3 \\ \sqrt{3}r_2^2 + i\sqrt{3}r_{-2}^3 & -i2\sqrt{\frac{3}{5}}r_{-1}^1 - i3\sqrt{\frac{2}{5}}r_{-1}^3 & 1 - \sqrt{3}r_0^2 & i\frac{3}{\sqrt{5}}r_{-1}^1 + \sqrt{3}r_1^2 \\ i\sqrt{6}r_{-3}^3 & \sqrt{3}r_2^2 - i\sqrt{3}r_{-2}^3 & -i\frac{3}{\sqrt{5}}r_{-1}^1 + \sqrt{3}r_1^2 & 1 + \sqrt{3}r_0^2 \end{bmatrix}$$

^{*}Erik Thomé, Multistrange and Charmed Antihyperon-Hyperon Physics for PANDA Ph. D. Thesis, Uppsala University (2012)

Joint Angular Distribution of the Two Decays

Spin
$$\frac{3}{2}$$
 hyperons

Assumptions : $\alpha_{\Omega} = 0$, $\beta_{\Omega} \approx 0$

CP-invariance: $\beta_{\Omega} \approx 0$, $\gamma_{\Omega} \approx 1$ can be tested by

$$\frac{\beta_{\Omega}}{\gamma_{\Omega}} = \frac{\langle \cos \theta_p \sin \phi_p \rangle}{\langle \sin \theta_p \sin \phi_p \rangle}$$

$$\begin{split} &\langle (3\cos\Theta_{\Lambda}-1)\sin\phi_{\mathbf{p}}\rangle = \\ &= \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\pi} I(\Theta_{\Lambda},\phi_{\Lambda},\Theta_{\mathbf{p}},\phi_{\mathbf{p}}) \times \\ &\sin\Theta_{\Lambda}(3\cos\Theta_{\Lambda}-1)\sin\Theta_{\mathbf{p}}\sin\phi_{\mathbf{p}}d\Theta_{\Lambda}d\phi_{\Lambda}d\Theta_{\mathbf{p}}d\phi_{\mathbf{p}} = \\ &= -\frac{3\pi\alpha_{\Lambda}\gamma_{\Omega}r_{-1}^{1}}{20\sqrt{10}} \\ &\langle (15\cos\Theta_{\Lambda}-1)\sin\phi_{\mathbf{p}}\rangle = \\ &= \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\pi} I(\Theta_{\Lambda},\phi_{\Lambda},\Theta_{\mathbf{p}},\phi_{\mathbf{p}}) \times \\ &\sin\Theta_{\Lambda}(15\cos\Theta_{\Lambda}-1)\sin\Theta_{\mathbf{p}}\sin\phi_{\mathbf{p}}d\Theta_{\Lambda}d\phi_{\Lambda}d\Theta_{\mathbf{p}}d\phi_{\mathbf{p}} = \\ &= \frac{\sqrt{3}\pi\alpha_{\Lambda}\gamma_{\Omega}r_{-1}^{3}}{2\sqrt{5}} \\ &\langle \sin\phi_{\Lambda}\cos\phi_{\mathbf{p}}\rangle = \\ &= \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\pi} I(\Theta_{\Lambda},\phi_{\Lambda},\Theta_{\mathbf{p}},\phi_{\mathbf{p}}) \times \\ &\sin\Theta_{\Lambda}\sin\Theta_{\mathbf{p}}\sin\phi_{\Lambda}\cos\phi_{\mathbf{p}}d\Theta_{\Lambda}d\phi_{\Lambda}d\Theta_{\mathbf{p}}d\phi_{\mathbf{p}} = \\ &= -\frac{3\pi^{2}\alpha_{\Lambda}\gamma_{\Omega}r_{-2}^{3}}{1024} \\ &\langle \sin\phi_{\Lambda}\cos\phi_{\Lambda}\sin\phi_{\mathbf{p}}\rangle = \\ &= \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2\pi} I(\Theta_{\Lambda},\phi_{\Lambda},\Theta_{\mathbf{p}},\phi_{\mathbf{p}}) \times \\ &\sin\Theta_{\Lambda}\sin\Theta_{\mathbf{p}}\sin\phi_{\Lambda}\cos\phi_{\Lambda}\sin\phi_{\mathbf{p}}d\Theta_{\Lambda}d\phi_{\Lambda}d\Theta_{\mathbf{p}}d\phi_{\mathbf{p}} = \\ &= -\frac{\pi\alpha_{\Lambda}\gamma_{\Omega}}{640} \left(5\sqrt{6}r_{-3}^{3} - 4\sqrt{15}r_{-1}^{3} - 3\sqrt{10}r_{-1}^{1}\right) \end{split}$$