

Meeting on hyperons in PANDA

SeeVogh Meeting
October 14th 2014

Agenda

- Round-the-table presentation:
 - Name
 - Institute
 - Hyperon interest
- Organisation of the work involving hyperons
 - SeeVogh meetings: suitable day?
 - Session at the Collaboration meeting
 - Mailing list
- The scrutiny campaign
 - Example: Simulation of the $\overline{p}p o \Omega\Omega$ reaction
- Beyond the scrutiny: long-term plans for hyperons in PANDA.
- A.O.B.

The scrutiny campaign

How do we organise this work in the best possible way?

- What do we need to do?
- What can we achieve?
- Who is willing to contribute?
- Example: the $\overline{p}p o \Omega\Omega$ reaction.

Performance study of the $\overline{p}p \to \overline{\Omega}\Omega$ reaction

- Weak decay → displaced vertices
 - Good spacial resolution required
 - More difficult to handle in reconstruction.
 - Background can be reduced to very low level.
- 6 final state particles.
- Particle identification usually not needed to reduce background

Applicable to most channels involving hyperons

State of Pandaroot

- The displaced vertices of hyperons imply that:
 - Fastsim should not be used.
 - Realistic pattern recognition not yet ready.

Solution:

Full pandaroot simulations with ideal pattern recognition.

Some details.....

- Use standard macro recoideal_complete.C from /macro/run
- Set PropagateBackToIP(kFalse);
- Three different detector scenarios:
 - Full
 - No MVD/GEM
 - No FTS
- Comment out corresponding parts in all macros (I can put the macros I use at some accessible place).
- 10000 events for each case.
- Pandaroot revision:
- MC truth identification of pions, protons and kaons.

Phase space of $\overline{p}p \to \overline{\Omega}\Omega$ at 12 GeV/c

Vertex distributions

Case	Particle	Eff (%)
Full	٨	45
	Λbar	34
	Ω	33
	Ωbar	24
	$\Omega\Omega$ bar	8.3
No FTS	٨	31
	Λbar	23
	Ω	24
	Ωbar	15
	$\Omega\Omega$ bar	2.9
No MVD/GEM	٨	23
	Λbar	8.9
	Ω	4.6
	Ωbar	2.5
	$\Omega\Omega$ bar	0.05

Case	Particle	Eff (%)
Full	٨	45
	Λbar	34
	Ω	33
	Ωbar	24
	$\Omega\Omega$ bar	8.3
No FTS	٨	31
	Λbar	23
	Ω	24
	Ωbar	15
	$\Omega\Omega$ bar	2.9
No MVD/GEM	٨	23
	Λbar	8.9
	Ω	4.6
	Ωbar	2.5
	$\Omega\Omega$ bar	0.05

Question marks

- About 1/3 of the efficiency obtained with the old framework (thesis by Erik Thomé).
- Efficiency drop for antiprotons at ~20 degrees, according to Stefano due to missing mvd/gem tracking code.
 Details will be given at today's pandaroot meeting.

We need to investigate how trustworthy these numbers are.

- How precise numbers can we achieve?
- How precise numbers do we need to achieve?

Long-term plans fr hyperon studies with PANDA

We need:

- Realistic pattern recognition that works for displaced vertices
 - In STT/MVD/GEM
 - In FTS
- Reconstruction of low energy particles