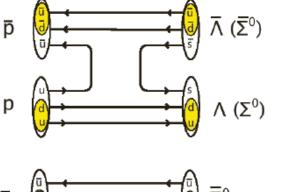


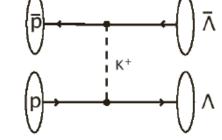
Hyperons in PANDA report for the Scrutiny Group

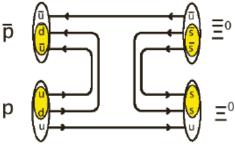
Karin Schönning November 4th 2014

Outline

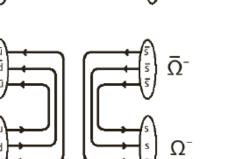
- Main physics goals
- Prerequisites
- Results from simulation studies
 - The benchmark $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ channel at 1.64 GeV/c
 - The $\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$ channel at 4 GeV/c
 - The $\overline{p}p \rightarrow \overline{\Omega}^+ \Omega^-$ channel at 12 GeV/c
- A few words on $\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$
- Conclusions

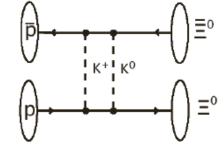

Main Physics Goals

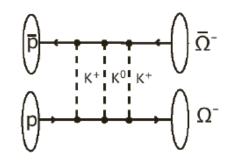

- Provide new, high statistics and high quality samples of Λ and Σ production for Partial Wave Analysis.
- Study the differential cross section, the polarisation and the spin correlations of the $\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$ reaction for the first time.
- Observe $\overline{p}p \to \overline{\Omega}^+ \Omega^-$ and $\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$ for the first time.
 - Production of hyperons of different strangeness probes QCD in the confinement regime.
 - Strange and charmed hyperon production probes two different energy scales.



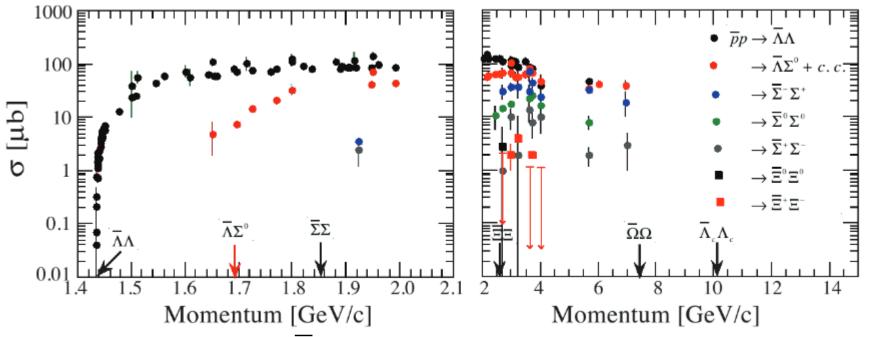
Main Physics Goals


We want to provide high quality data that serve as a guideline towards a theory that correctly describes the production of strange systems.





p



Long-term physics goals

- Provide high statistics samples of Λ and Ξ for CP violation studies.
- Measure the spin and polarisation parameters of the $\boldsymbol{\Omega}$ baryon.
- Measure the angular distribution, the polarisation and the spin correlations of the Λ_c baryon.

Previous measurements of $\overline{p}p \rightarrow \overline{Y}Y$

- A lot of data on $\overline{p}p \rightarrow \Lambda\Lambda$ near threshold, mainly from PS185 at LEAR*.
- Very scarce data bank above 4 GeV.
- Only a few bubble chamber events on $\overline{p}p \rightarrow \overline{\Xi}\Xi$
- No data on $\overline{p}p \to \Omega\Omega \;\; {\rm nor}\; \overline{p}p \to \Lambda_c\Lambda_c$

* See e.g. T. Johansson, AIP Conf. Proc. Of LEAP 2003, p. 95.

PANDA – a unique experiment for hyperon physics

Hyperon production in $\overline{p}p$ production requires an antiproton beam at intermediate momenta, with high precision and high intensity.

- No other such facility exists.
- No other such facility is, to our best knowledge, planned within the timescale of PANDA.

→ It is likely that within the next 20 years, no other facility will be able to perform these measurements

Prerequisities

p

π

Most hyperons of interest for QCD dynamics studies decay weakly → decay vertex separated from production vertex.

- Good spacial resolution required
- Background can be reduced to very low level by requiring separated decay vertex.

- PID detectors not crucial.

Prerequisisties

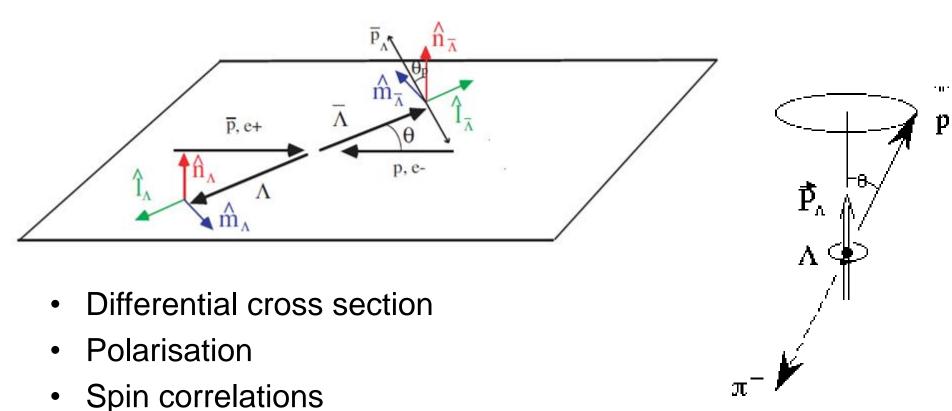
Most hyperon channels of interest for PANDA decay with large BR into charged hadrons

 \rightarrow EMC not needed.

Channels containing $\Sigma^0 \rightarrow \Lambda \gamma$ requires everything needed for Λ plus EMC.

Simulation studies for the scrutiny campaign

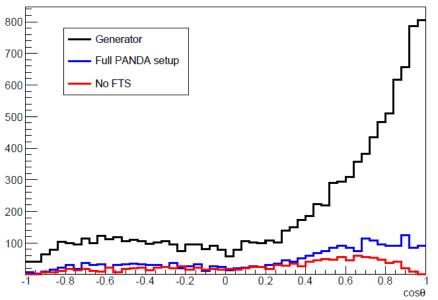
- Full Pandaroot simulations with ideal pattern recognition (not fastsim).
- Three different detector scenarios:
 - Full
 - No MVD/GEM
 - No FTS

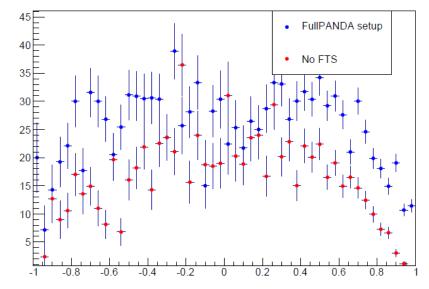

The $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ at 1.64 GeV/c

- Well-known from other experiments.
- Studied with old PANDA framwork (Thesis by S. Grape).
- Most heavier hyperons decay into hyperons → sets a "minimum standard".

Physics goals of $\overline{p}p \to \overline{\Lambda}\Lambda$

- Test the PANDA performace
- Provide a world leading data sample (> 40000 events) at the same energy from PS185.




Acceptance as a function of $cos\theta_{\Lambda bar}$

cos0 distribution

Without the FTS, PWA is not possible! Even though the total A yield is acceptable also without the FTS, the efficiency is zero where the cross section is the highest.

Acceptance as a function of $\cos\theta$

Required integrated luminosity

For > 40000 events (current world record) with $\sigma = 64 \ \mu b$ (PS185) and BR($\Lambda \rightarrow p\pi$) 64% we need:

Setup	ε(%)	L (pb⁻¹)	Hours with 10 ³¹ cm ⁻² s ⁻¹
Full	23	0.017	0.18
No FTS	12	0.032	0.35
No MVD/GEM	0.3	1.27	14

We will be able to get good physics results within short time even with reduced luminosity, but BOTH the FTS and MVD/GEM are needed to get sufficient data quality for PWA.

UPPSALA UNIVERSITET

Physics goals of $\overline{p}p \rightarrow \overline{\Xi}^+\Xi^-$

 π

Short-term goals:

- Measure σ with larger precision $_{d\sigma}$
- Provide first measurement of $\frac{1}{d\cos\theta_{\pi}}$, requires ~1000 events

a

 Polarisation and spin correlations, requires ~10000 events

Long-term goals:

CP tests, requires
 > 10000000 events

UPPSALA UNIVERSITET

Required integrated luminosity

For > 10000 events with $\sigma = 2 \ \mu b$ and BR($\Lambda \rightarrow p\pi$) 64% we need:

Setup	ε(%)	L (pb ⁻¹)	Hours with 10 ³¹ cm ⁻² s ⁻¹
Full	10	0.12	3.4
No FTS	3.4	0.36	10
No MVD/GEM	0.01	122	3400

We will be able to get good physics results within short time even with reduced luminosity.

UPPSALA UNIVERSITET

Required integrated luminosity

For > 10 000 000 events with $\sigma = 2 \ \mu b$ and BR($\Lambda \rightarrow p\pi$) 64% we need:

Setup	ε(%)	L (pb ⁻¹)	Days with 10 ³¹ cm ⁻² s ⁻¹
Full	10	0.12	140
No FTS	3.4	0.36	416
No MVD/GEM	0.01	122	141300

With reduced luminosity, a lot of time is needed to compete with world data on CP tests.

Physics goals of $\overline{p}p \rightarrow \overline{\Omega}\Omega$

Short-term:

- First measurement of the total cross section
- Measure $\frac{d\sigma}{d\cos\theta_{\Omega}}$: requires ~ 1000 events. Long-term
 - Measure polarisation parameters:

$$r_{0}^{2} = \frac{15}{2\sqrt{3}} \left(\frac{1}{3} - \langle \cos^{2} \theta_{\Lambda} \rangle \right)$$

$$r_{2}^{2} = \frac{8}{3} 1 - \langle \cos^{2} \theta_{\Lambda} \rangle - 2 \langle \sin^{2} \theta_{\Lambda} \sin^{2} \phi_{\Lambda} \rangle$$
 (+ 4 more: $r_{-1}^{1}, r_{-1}^{3}, r_{-2}^{1}$ and r_{-3}^{3})

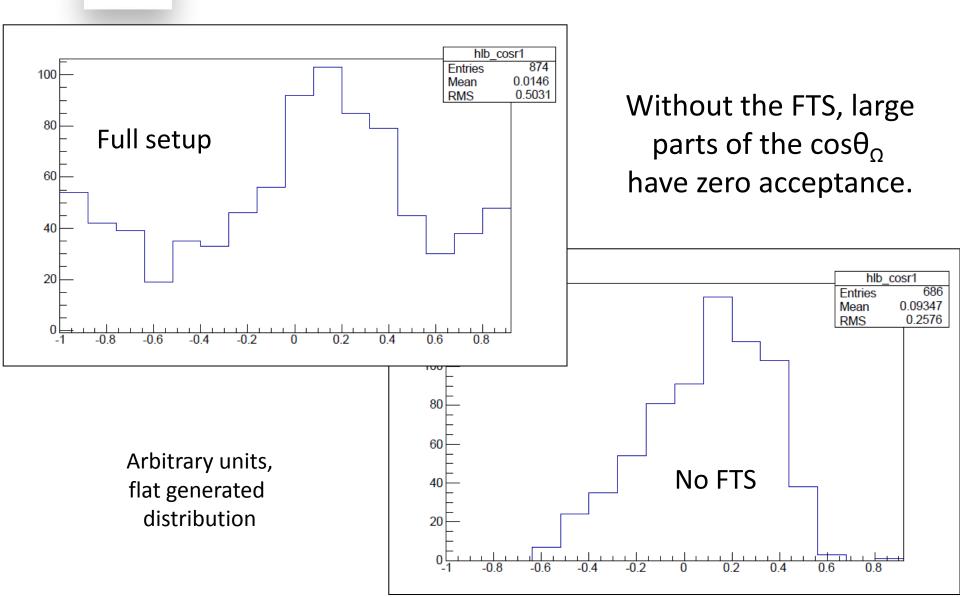
$$r_{1}^{2} = 5 \langle \cos \theta_{\Lambda} \sin \theta_{\Lambda} \cos \phi_{\Lambda} \rangle$$

Requires ~ 10000 events

Cross section of $\overline{p}p \rightarrow \overline{\Omega}\Omega$

- No measurement exist.
- Theory prediction based on Quark Gluon String Model (QGSM) of ~2 nb.*
- An estimate assuming $\frac{\sigma(p)}{\sigma(p)}$ gives a cross section $\sigma(p)$ of ~60 nb.

$$\frac{\sigma(p\bar{p}\to\Omega\bar{\Omega})}{\sigma(p\bar{p}\to\Xi\bar{\Xi})} = \frac{\sigma(p\bar{p}\to\bar{\Xi}\Xi)}{\sigma(p\bar{p}\to\bar{\Lambda}\Lambda)} = \frac{1}{30}$$


In our calculation we use 2 nb.

* Kaidalov & Volkovitsky, Z. Phys. C 63 517-524 (1994)

Acceptance as a function of $cos\theta_{\Omega bar}$

Required integrated luminosity

For > 1000 events with $\sigma = 2$ nb and BR($\Lambda \rightarrow p\pi$) 64% and BR($\Omega \rightarrow \Lambda K$) we need:

Setup	ε(%)	L (pb ⁻¹)	Days with 10 ³¹ cm ⁻² s ⁻¹
Full	8.3	31.8	36
No FTS	2.9	91.0	6110
No MVD/GEM	0.05	5280	105

We should be able to get enough data for measurement of $\,\sigma\,$ and $\,\frac{d\sigma}{d\cos\theta_\Omega}\,$

within reasonable time if the FTS and MVD/GEM are included.

Polarisation parameters (>10000 events) require high luminosity.

A few words on $\overline{p}p \rightarrow \Lambda_c^- \Lambda_c^+$

- Cross section predictions up to ~100 nb
- Many decay channels, small fractions (BR($\Lambda_c \rightarrow \Lambda \pi$) ~ 1%)
- Predicted rate with σ=100 nb and L=2*10³² cm⁻² s⁻¹:
 25 events/day
- Low luminosity: ~ 1 event/day

→ high luminosity needed for other measurements than total cross section.

Summary

Which part of the program are adequate for the start-up of PANDA, with reduced luminosity?

- $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ at 1.64 GeV for benchmarking and spin observables for PWA
- $\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$ at 4 GeV for differential cross section, polarisation and spin correlations
- $\overline{p}p \rightarrow \overline{\Omega}^+ \Omega^-$ at 12 GeV for cross section and differential cross section.

UNIVERSITET

Summary

Which integrated luminosity is needed for the first physics results?

- $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ at 1.64 GeV/c for benchmarking and PWA: 0.017 pb⁻¹ (Full)
- $\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$ at 4 GeV for spin observables: 0.12 pb⁻¹ (Full)
- $\overline{p}p \rightarrow \overline{\Omega}^{+}\Omega^{-}$ at 12 GeV, σ and $\frac{d\sigma}{d\cos\theta_{\Omega}}$ 31.8 pb⁻¹ (Full)

Summary

Which parts of the detector are mandatory to reach the first physics results with PANDA?

- Total cross sections: STT, MVD, GEM
- Differential cross sections: STT, MVD, GEM, FTS
- Spin observables: STT, MVD, GEM, FTS