

E. Thomé

Outline

Simulations at 1.64 GeV

Simulations at 15 GeV

Conclusions

Outlook

Simulations of $\bar{\rm p}{\rm p}\to\bar{\Lambda}\Lambda$

E. Thomé

Department of Physics and Astronomy Uppsala University

Panda Collaboration Meeting GSI 2008-03-06

Outline

 $\begin{array}{c} \text{Simulations of} \\ \bar{\rm p} {\rm p} \, \rightarrow \, \bar{\Lambda} \Lambda \end{array}$

E. Thomé

Outline

Simulations at 1.64 GeV

Simulations at 15 GeV

Conclusions

Outlook

Simulations at 1.64 GeV

2 Simulations at 15 GeV

3 Conclusions

Simulations at 1.64 GeV

$\begin{array}{c} \text{Simulations of} \\ \bar{\rm p} {\rm p} \, \rightarrow \, \bar{\Lambda} \Lambda \end{array}$

E. Thomé

Outline

Simulations at 1.64 GeV

Simulations at 15 GeV

Conclusions

Outlook

Differences from the December meeting:

- Release 0.15.2 instead of 0.13.1
- $\bullet\,$ Polarisation given by sin $2\Theta_{\bar{\Lambda}}$ instead of 100%

Same:

- Events produced by modified generator, originally used at the PS185 experiment
- \bullet Angular distribution of $\bar{\Lambda}$ from PS185 experiment

Simulations at 1.64 GeV

Simulations of $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$

E. Thomé

Outline

Simulations at 1.64 GeV

- Simulations at 15 GeV
- Conclusions
- Outlook

- $1.10 < m_{\Lambda} < 1.13, \ P(\chi^2) > 0.001$
- $\bullet\,$ Efficiency drops from 35% to 20%
- Still very few background events 0.5%
- Angles, momenta and vertices are still well reconstructed

Probable reason for drop in efficiency:

- For release 0.15.2 the material budget of the MVD has been increased
- In release 0.15.2 the minimum number of hits necessary for a track has been increased

E. Thomé

Simulations at 1.64 GeV

$\bar{\Lambda}$ angular distribution

Angular distribution of $\overline{\Lambda}$ from the PS185 experiment and from the simulation.

E. Thomé

Outline

Simulations at 1.64 GeV

```
Simulations at 15 GeV
```

Conclusions

Outlook

Reconstruction of the $\bar{\Lambda}$ lifetime

Reconstructed $c\tau = 7.06 \pm 0.03$ cm. The measured experimental value is 7.89 cm.

E. Thomé

Outline

Simulations at 1.64 GeV

```
Simulations at 15 GeV
```

Conclusions

Outlook

Reconstruction of $\bar{\Lambda}$ polarisation

Angular distribution of decay $\bar{\mathrm{p}}$ in $\bar{\Lambda}$ rest system given by

$$I(\theta_{\bar{p}}) = \frac{1}{4\pi} \left(1 + \alpha P \cos \theta_{\bar{p}} \right) \tag{1}$$

To compensate for different detector efficiency at different angles, non-polarised data is used. Since the polarisation now depends on the production angle of $\overline{\Lambda}$ this correction is done for 20 different intervals of $\cos \theta_{\overline{\Lambda}}$.

E. Thomé

Outline

Simulations at 1.64 GeV

- Simulations at 15 GeV
- Conclusions
- Outlook

Reconstructed $\bar{\Lambda}$ polarisation as a function of $\bar{\Lambda}$ production angle

Too small polarisation in y-direction for negative $\cos \Theta_{\bar{\Lambda}}$.

$\cos\Theta_{\bar{p}}$ distribution for the polarisation point most different from zero

E. Thomé

Outline

Simulations at 1.64 GeV

Simulations at 15 GeV

Conclusions

Outlook

When the points close to -1 are neglected the polarisation becomes -0.03 instead of -0.63.

E. Thomé

Outline

Simulations at 1.64 GeV

Simulations at 15 GeV

Conclusions

Outlook

Simulations at 15 GeV

- \bullet Polarisation given by $\sin 2\Theta_{\bar{\Lambda}}$
- Angular distribution of $\bar{\Lambda}$ obtained from data at $p_{\bar{p}} = 6~{
 m GeV}$
- The non-polarised data used for efficiency calibration generated with flat angular distribution of $\bar{\Lambda}$.
- Efficiency 12% for polarised data, 20% for non-polarised data

E. Thomé

Outline

Simulations at 1.64 GeV

Simulations at 15 GeV

Conclusions

Outlook

Reconstruction of $\cos\Theta_{\bar{p}}$ in $\bar{\Lambda}$ rest system

Reconstructed $\cos \theta_{\bar{p}}$ in $\bar{\Lambda}$ rest system versus MC information. The faint line in the y-direction is a sign of misidentification of $\bar{\Lambda}$ and Λ .

E. Thomé

Outline

Simulations at 1.6 GeV

Simulations at 15 GeV

Conclusions

Outlook

Reconstruction of the $\bar{\Lambda}$ lifetime

Vertex of $\overline{\Lambda}$ in z direction for the reconstructed events and for all generated events. No events are reconstructed over 110 cm.

Reconstructed $\bar{\Lambda}$ decay vertex in z-direction versus MC information.

The reconstruction becomes worse for decay vertices outside the MVD and no events are reconstructed over 110 cm.

E. Thomé

Outline

Simulations at 1.64 GeV

Simulations at 15 GeV

Conclusions

Outlook

$\bar{\Lambda}$ angular distribution

Angular distribution of $\bar{\Lambda}$ from the event generator and from the simulation.

E. Thomé

Outline

Simulations at 1.64 GeV

Simulations at 15 GeV

Conclusions

Outlook

Reconstructed $\bar{\Lambda}$ polarisation as a function of $\bar{\Lambda}$ production angle

E. Thomé

Outline

Simulations at 1.64 GeV

Simulations at 15 GeV

Conclusions

Outlook

Conclusions

Simulations at 1.64 GeV

- Efficiency drop from 35% to 20%
- \bullet Reasonably good reconstruction of polarisation as a function of $\bar{\Lambda}$ angle
- Slight problem with too low reconstructed polarisation for $\cos\theta_{\bar{\Lambda}} < 0$

Simulations at 15 GeV

- Efficiency 12% for forward peaked angular distribution of Λ
 20% for flat distribution
- Polarised data with flat angular distribution of $\bar{\Lambda}$ needed to reconstruct polarisation as a function of $\bar{\Lambda}$ angle
- Problem with reconstruction of $\bar{\Lambda}$ decay vertex

E. Thomé

Outline

Simulations at 1.64 GeV

Simulations at 15 GeV

Conclusions

Outlook

Outlook

- Experimental polarisation data for 1.64 GeV
- Reconstruction of polarisation as a function of Λ angle at 15 GeV, using polarised data with flat angular distribution
- Other hyperons (Ξ^+ , Ξ^- , ...)