Status of $\bar{p} p \rightarrow h_{c} \rightarrow \eta_{c}+\gamma$ analysis

D. Melnychuk, SINS Warsaw

PANDA collaboration meeting, 04.07.2007

Outline

(1) Physics motivation
(2) Result of analysis
(3) Summary

h_{c} discovery

- E760 claimed signal in $h_{c} \rightarrow J / \psi+\pi^{0}$ decay.
- E835 failed to confirm this results but made a hint for $\bar{p} p \rightarrow h_{c} \rightarrow \eta_{c}+\gamma$ decay
- In 2004 CLEO observes h_{c} in inclusive and exclusive measurements of Ψ^{\prime} decay.

Motivation to study

Spin-Spin part of potential

$$
v_{S S}=\frac{2\left(\vec{S}_{1} \cdot \vec{S}_{2}\right)}{3 m_{c}^{2}} \cdot \nabla^{2} V_{V}(r)
$$

- For V_{V} purely from one-gluon exchange V_{V} (no vector contribution from confining part of potential) $V_{V}(r) \sim \frac{1}{r}$
- For P-state $(\Psi(r \rightarrow 0) \rightarrow 0)$ no hiper-fine splitting
- Trtplet P-states are split by spin-orbit interaction
- Centre of gravity of triplet state

$$
M_{c o g}=\frac{M\left(\chi_{0}\right)+3 M\left(\chi_{1}\right)+5 M\left(\chi_{2}\right)}{9}
$$

- Small $M_{c o g}-M_{h_{c}}$ results in small vector contribution to confining potential

h_{c} decay modes

Discovery channel

$$
h_{c} \rightarrow J / \psi+\pi^{0}
$$

Exclusive process

$$
\bar{p} p \rightarrow h_{c} \rightarrow \eta_{c}+\gamma
$$

Neutral channel

$$
h_{c} \rightarrow \gamma+\eta_{c} \rightarrow \gamma+\gamma+\gamma \quad\left(B R=4.3 \cdot 10^{-4}\right)
$$

Channels with charged particles

$$
\begin{array}{lll}
\eta_{c} \rightarrow K_{S}^{0} K^{ \pm} \pi^{ \pm} & \left(B R=1.9 \cdot 10^{-2}\right) & \eta_{c} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \\
\eta_{c} \rightarrow K_{L}^{0} K^{ \pm} \pi^{ \pm} & \left(B R=1.9 \cdot 10^{-2}\right) & \eta_{c} \rightarrow K^{+} K^{-} \pi^{0} \quad\left(B R=1.10^{-2}\right) \\
\eta_{c} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \quad\left(B R=1.5 \cdot 10^{-2}\right) & \eta_{c} \rightarrow \pi^{+} \pi^{-} \eta(\gamma \gamma) \quad\left(B R=1.3 \cdot 10^{-2}\right)
\end{array}
$$

Description of the studied channel

Due to C-parity conservation the helicity-1 state does not enter into h_{c} production.

$$
W(\theta)=W(\pi / 2) \sin ^{2}(\theta)
$$

Cross-sections

$p \bar{p} \rightarrow h_{c} \rightarrow \eta_{c}+\gamma_{1} \rightarrow \gamma \gamma \gamma_{1}$,

$$
E_{\gamma}=503 \mathrm{MeV}
$$

$$
\eta_{c} \rightarrow \gamma \gamma, B R=4.3 \cdot 10^{-4}
$$

$$
\sigma_{p \bar{p} \rightarrow h_{c} \rightarrow \eta_{c}+\gamma}=16.8 \pm 2.7 p b(E 835)
$$

$$
\sigma_{\pi^{0} \pi^{0}}=31.4 \mathrm{nb}, E=3526 \mathrm{MeV},|\cos (\theta)|<0.6
$$

$$
\sigma_{\pi^{0} \gamma}=1.4 \mathrm{nb}, E=3526 \mathrm{MeV},|\cos (\theta)|<0.6
$$

$E_{C M}=3526 \mathrm{MeV}, p_{z}=5609 \mathrm{MeV}$

Event selection

- 100 k events $p \bar{p} \rightarrow h_{c} \rightarrow \eta_{c}+\gamma,\left(E_{C M}=3526 \mathrm{MeV}\right)$
- background
- $1 \mathrm{M} \mathrm{p} \bar{p} \rightarrow \pi^{0} \pi^{0}$
- $1 \mathrm{M} p \bar{p} \rightarrow \pi^{0} \gamma$
- Selection cuts:
- Only 3γ in events
- η_{c} mass range [2.6:3.2] GeV
- Difference to beam momentum:

$$
\begin{aligned}
& \left|p\left(\eta_{c}+\gamma\right)_{z}-p_{b, z}\right|<0.2 \mathrm{GeV} \\
& \left|p\left(\eta_{c}+\gamma\right)_{x, y}\right|<0.2 \mathrm{GeV}
\end{aligned}
$$

- $E_{\gamma 3}$ within [0.4:0.6] GeV
- $\left|\cos \left(\theta_{\gamma 1,2}^{*}\right)\right|<0.4$
- $M\left(\gamma_{1}+\gamma_{3}\right), M\left(\gamma_{2}+\gamma_{3}\right)>1.0 \mathrm{GeV}$

$$
h_{c} \rightarrow \eta_{c}+\gamma
$$

h_{c} mass	86.1%
3γ	67.1%
beam momentum	63.6%
$E_{\gamma 3}$	61.6%
$\cos \left(\theta_{1,2}\right)$	23.5%
$M(\gamma 1+\gamma 3), M(\gamma 2+\gamma 3)$	8.8%

D. Melnychuk, SINS Warsaw
h_{c} analysis status

Number of γ in $\pi^{0} \pi^{0}, \pi^{0} \gamma$ events

Distribution of $\cos \left(\theta_{\sim 1,2}\right)$ in h_{c} events

Distribution of $\cos \left(\theta_{\sim 1,2}\right)$ in $\pi^{0} \pi^{0}$ events

Distribution of $\cos \left(\theta_{\gamma 1,2}\right)$ in $\pi^{0} \gamma$ events

Distribution of $M\left(\gamma_{1}+\gamma_{3}\right), M\left(\gamma_{2}+\gamma_{3}\right)$

Summary

- With applied tight cuts and available statistics it seems possible to extract signal of interest from background.
- Signal to background ratio $h_{c}: \pi^{0} \pi^{0}: \pi^{0} \gamma=1:<0.4:<0.02$
- Other background channel with neutral final states should be studied.

