Status of $\overline{p}p \rightarrow h_c \rightarrow \eta_c + \gamma$ analysis

D. Melnychuk, SINS Warsaw

PANDA collaboration meeting, 06.03.2008

D. Melnychuk, SINS Warsaw h_c analysis status

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Reaction for study

$$p\overline{p} \rightarrow h_c \rightarrow \eta_c + \gamma$$

 E_{γ} =503 MeV E_{CM} =3526 MeV, p_z =5609 MeV

$\sigma_{p\overline{p}\rightarrow h_c\rightarrow \eta_c+\gamma} = 40$ nb (E835)

Decay modes of η_c

• $\eta_c \to K_S^0 K^{\pm} \pi^{\mp}, \ BR = 1.9 \cdot 10^{-2}, \ K_s \to \pi^+ \pi^-, 69\%$

•
$$\eta_c \to K^{0*} \overline{K^{0*}}, BR = 0.46 \cdot 10^{-2}, K^{0*} \to K^+ \pi^-, 67\%$$

•
$$\eta_c \rightarrow \gamma \gamma, \ BR = 4.3 \cdot 10^{-4}$$

Angular distribution

Due to C-parity conservation the helicity-1 state does not enter into h_c production.

$$W(\theta) = W(\pi/2)\sin^2(\theta)$$

ヘロン 人間 とくほ とくほ とう

3

Background for $h_{c} ightarrow K_{S}^{0} K^{\pm} \pi^{\mp} \gamma$

Background channels

• $p\overline{p} \rightarrow K_{s}K^{\pm}\pi^{\mp}\pi^{0}$

•
$$p\overline{p} \rightarrow K^+K^-\pi^+\pi^-\pi^0$$

•
$$p\overline{p} \rightarrow \pi^+\pi^-\pi^+\pi^-\pi^0$$

Cross-section estimation

• Extrapolation from lower energy.

Measurments in 1966 at Brookhaven gives

 $\sigma_{p\overline{p}\to K_{s}K^{\pm}\pi^{\mp}\pi^{0}} = 74\mu b$ at beam momentum 3.66 GeV. Scaling down according to inelastic cross-section gives $\sigma = 60\mu b$ at 5.6 GeV beam momentum.

Estimation from DPM.

2000000 events were generated with DPM and number of $K_{\rm s} K^{\pm} \pi^{\mp} \pi^{0}$ events were count (96). It corresponds to $\sigma = 3\mu b$.

Analised events:

- 78 k $p\overline{p} \rightarrow h_c \rightarrow K^0_S K^{\pm} \pi^{\mp} \gamma$
- 100 k $p\overline{p} \rightarrow K_s K^{\pm} \pi^{\mp} \pi^0$

Selection:

- 4C-fit to beam energy and momentum + additional constraint on K_s mass, CL> 0.05
- η_c pre-fit selection [2.6:3.2] GeV
- η_c post-fit selection [2.93:3.03] GeV
- *K*_s common vertex constraint, with pre-fit mass selection [0.3:0.8] GeV

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- *E*_γ within [0.4:0.6] GeV
- no π^0 candidates in event

D. Melnychuk, SINS Warsaw

h_c analysis status

- Background/signal ratio from 180:1 (extrapolation of the cross-section) to 9:1 (cross-section from DPM).
- Using 10 MeV gamma threshold vs. 30 MeV gamma threshold gives 20% improvement in signal/background ratio.
- Estimated event rate 2200 events/day.

Background for $h_c o K^{0*} \overline{K^{0*}} \gamma$

Background channels

•
$$p\overline{p} \rightarrow K^{0*}K^{-}\pi^{+}\pi^{0}$$

•
$$p\overline{p} \rightarrow K^+K^-\pi^+\pi^-\pi^0$$

- Extrapolation from lower energy. Measurments in 1966 at Brookhaven gives σ_{pp→K⁺K⁻π⁺π⁻π⁰} = 34µb at beam momentum 3.66 GeV. Scaling down according to inelastic cross-section gives σ = 28µb at 5.6 GeV beam momentum. 30% of events go via K^{0*} resonance. Assuming the same fraction at momentum 5.6 GeV σ_{pp→K^{0*}K⁻π⁺π⁰} = 8.4µb. No evidence for K^{0*}K^{0*} was observed in this channel.
- Estimation from DPM.

2000000 events were generated with DPM and number of $K^+K^-\pi^+\pi^-\pi^0$ and $K^{0*}K^-\pi^+\pi^0$ events were count (758 and 15). It corresponds to $\sigma = 22\mu b$ and $\sigma = 0.4\mu b$.

Analised events:

• 80 k -
$$p\overline{p} \rightarrow h_c \rightarrow K^{0*}\overline{K^{0*}}\gamma$$

• 1.128.000 -
$$p\overline{p}
ightarrow K^{0*}K^{-}\pi^{+}\pi^{0}$$

• 200 k -
$$p\overline{p} \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$$

Selection:

- 4C-fit to beam energy and momentum, CL> 0.1
- η_c pre-fit selection [2.6:3.2] GeV
- η_c post-fit selection [2.93:3.03] GeV
- K^{0*}, K^{0*} common vertex constraint, with pre-fit mass selection [0.7:1.1] GeV
- K^{0*}, K^{0*} post-fit selection [0.86:0.94] GeV
- *E*_γ within [0.4:0.6] GeV
- no π^0 candidates in event, i.e no 2 γ invariant mass in the range [0.115:0.15] GeV

Analysis of $h_c \to K^{0*} \overline{K^{0*}} \gamma$

Results on $h_c o K^{0*} \overline{K^{0*}} \gamma$

- Background/signal ratio from 10:1 (extrapolation of the cross-section) to 1:2 (cross-section from DPM) for $p\overline{p} \rightarrow K^{0*}K^{-}\pi^{+}\pi^{0}$ background channel and <15:1 for $p\overline{p} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ background channel (no events passed the cuts).
- Using 10 MeV gamma threshold vs. 30 MeV gamma threshold gives 50% improvement in signal/background ratio.
- Estimated event rate 400 events/day.

Background channels

- $p\overline{p} \rightarrow \pi^0 \pi^0$, $\sigma = 31.4$ nb, ($|cos(\theta)| < 0.6$)
- $p\overline{p} \rightarrow \pi^0 \gamma$, $\sigma = 1.4 \text{ nb}$

•
$$p\overline{p} \rightarrow \pi^0 \eta$$
, $\sigma = 33.6$ nb

•
$$p\overline{p} \rightarrow \eta\eta$$
, $\sigma = 34.04$ nb

Several EMC options were studies with this channel:

- Possible low energy thresholds - 10, 30, 50 MeV.
- With/without backward endcap.

Analised events:

• 20 k -
$$p\overline{p} \rightarrow h_c \rightarrow \eta_c + \gamma$$

• 100 k -
$$p\overline{p} \rightarrow \pi^0 \pi^0$$

- 100 k $p\overline{p} \rightarrow \pi^0 \gamma$
- 100 k $p\overline{p} \rightarrow \pi^0 \eta$

Selection:

- 4C-fit to beam momentum, CL>10⁻⁴
- *E*₇₃ within [0.4:0.6] GeV
- $|\cos(heta_{\gamma 1,2}^*)| < 0.6$

•
$$M(\gamma_1+\gamma_3), M(\gamma_2+\gamma_3)>1.0 GeV$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Results on $h_c \rightarrow 3\gamma$

Number of γ in event

Conclusions

- All the background is suppressed with signal efficieny 10% at the level of signal/background ratio 10:1.
- No diffrence between different threshold options
- Requirement on 3 γ in event make signal efficiency relatively lower for 10 MeV threshold in comparison with 30 or 50 MeV threshods.

The following signal/background ratios have been obtained for the studied h_c decay modes with correspondent event rates at $L = 2 \cdot 10^{32}$:

Summary		
decay mode	S:B ratio	Event rate (events/day)
$m{ ho}\overline{m{ ho}} ightarrowm{h_c} ightarrowm{K}_S^0m{K}^\pm\pi^\mp\gamma$	1:180-1:9	2200
$p\overline{p} ightarrow h_{c} ightarrow K^{0*} \overline{K^{0*}} \gamma$	1:10-2:1	400
$p\overline{p} ightarrow h_c ightarrow 3\gamma$	>10:1	30

ヘロト ヘアト ヘビト ヘビト

∃ <2 <</p>