Status of $\bar{p} p \rightarrow h_{c} \rightarrow \eta_{c}+\gamma$ analysis

D. Melnychuk, SINS Warsaw

PANDA collaboration meeting, 06.03.2008

Reaction for study

Decay modes of η_{c}

- $\eta_{c} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}, B R=1.9 \cdot 10^{-2}$, $K_{s} \rightarrow \pi^{+} \pi^{-}, 69 \%$
- $\eta_{c} \rightarrow K^{0 *} \overline{K^{0 *}}, B R=0.46 \cdot 10^{-2}$,
$K^{0 *} \rightarrow K^{+} \pi^{-}, 67 \%$
- $\eta_{c} \rightarrow \gamma \gamma, B R=4.3 \cdot 10^{-4}$

Angular distribution

Due to C-parity conservation the helicity-1 state does not enter into h_{c} production.

$$
W(\theta)=W(\pi / 2) \sin ^{2}(\theta)
$$

$$
p \bar{p} \rightarrow h_{c} \rightarrow \eta_{c}+\gamma
$$

$$
E_{\gamma}=503 \mathrm{MeV}
$$

$E_{C M}=3526 \mathrm{MeV}, p_{z}=5609 \mathrm{MeV}$

$$
\sigma_{p \bar{p} \rightarrow h_{c} \rightarrow \eta_{c}+\gamma}=40 \mathrm{nb}(E 835)
$$

Background for $h_{c} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \gamma$

Background channels

- $p \bar{p} \rightarrow K_{s} K^{ \pm} \pi^{\mp} \pi^{0}$
- $p \bar{p} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$
- $p \bar{p} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}$

Cross-section estimation

- Extrapolation from lower energy.

Measurments in 1966 at Brookhaven gives
$\sigma_{p \bar{p} \rightarrow K_{s} K^{ \pm} \pi^{\mp} \pi^{0}}=74 \mu$ bat beam momentum 3.66 GeV .
Scaling down according to inelastic cross-section gives $\sigma=60 \mu \mathrm{~b}$ at 5.6 GeV beam momentum.

- Estimation from DPM.

2000000 events were generated with DPM and number of $K_{s} K^{ \pm} \pi^{\mp} \pi^{0}$ events were count (96). It corresponds to $\sigma=3 \mu$.

Event selection

Analised events:

- $78 \mathrm{k}-p \bar{p} \rightarrow h_{c} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \gamma$
- $100 \mathrm{k}-p \bar{p} \rightarrow K_{s} K^{ \pm} \pi^{\mp} \pi^{0}$

Selection:

- 4C-fit to beam energy and momentum + additional constraint on K_{s} mass, $\mathrm{CL}>0.05$
- η_{c} pre-fit selection [2.6:3.2] GeV
- η_{c} post-fit selection [2.93:3.03] GeV
- K_{s} common vertex constraint, with pre-fit mass selection [0.3:0.8] GeV
- E_{γ} within [0.4:0.6] GeV
- no π^{0} candidates in event

Analysis of $h_{c} \rightarrow K_{s} K^{+} \pi^{-}$

Event generator

Full simulation (no 4C-fit)

D. Melnychuk, SINS Warsaw
h_{c} analysis status

- Background/signal ratio from 180:1 (extrapolation of the cross-section) to 9:1 (cross-section from DPM).
- Using 10 MeV gamma threshold vs. 30 MeV gamma threshold gives 20\% improvement in signal/background ratio.
- Estimated event rate - 2200 events/day.

Background for $h_{c} \rightarrow K^{0 *} K^{0 *} \gamma$

Background channels

- $p \bar{p} \rightarrow K^{0 *} K^{-} \pi^{+} \pi^{0}$
- $p \bar{p} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$
- Extrapolation from lower energy. Measurments in 1966 at Brookhaven gives $\sigma_{p \bar{p} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}}=34 \mu b$ at beam momentum 3.66 GeV. Scaling down according to inelastic cross-section gives $\sigma=28 \mu \mathrm{~b}$ at 5.6 GeV beam momentum. 30% of events go via $K^{0 *}$ resonance. Assuming the same fraction at momentum 5.6 GeV $\sigma_{p \bar{p} \rightarrow K^{0 *} K^{-} \pi^{+} \pi^{0}}=8.4 \mu b$. No evidence for $K^{0 *} \overline{K^{0 *}}$ was observed in this channel.
- Estimation from DPM.

2000000 events were generated with DPM and number of $K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$ and $K^{0 *} K^{-} \pi^{+} \pi^{0}$ events were count (758 and 15). It corresponds to $\sigma=22 \mu \mathrm{~b}$ and $\sigma=0.4 \mu \mathrm{~b}$.

Event selection

Analised events:

- $80 \mathrm{k}-p \bar{p} \rightarrow h_{c} \rightarrow K^{0 *} \overline{K^{0 *}} \gamma$
- 1.128.000- $p \bar{p} \rightarrow K^{0 *} K^{-} \pi^{+} \pi^{0}$
- $200 \mathrm{k}-p \bar{p} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$

Selection:

- 4C-fit to beam energy and momentum, CL> 0.1
- η_{c} pre-fit selection [2.6:3.2] GeV
- η_{c} post-fit selection [2.93:3.03] GeV
- $K^{0 *}, \overline{K^{0 *}}$ common vertex constraint, with pre-fit mass selection [0.7:1.1] GeV
- $K^{0 *}, \overline{K^{0 *}}$ post-fit selection [0.86:0.94] GeV
- E_{γ} within [0.4:0.6] GeV
- no π^{0} candidates in event, i.e no 2γ invariant mass in the range [0.115:0.15] GeV

Analysis of $h_{c} \rightarrow K^{0 *} K^{0 *}$

D. Melnychuk, SINS Warsaw
h_{c} analysis status

Results on $h_{c} \rightarrow K^{0 *} \overline{K^{0 *}} \gamma$

- Background/signal ratio from 10:1 (extrapolation of the cross-section) to 1:2 (cross-section from DPM) for $p \bar{p} \rightarrow K^{0 *} K^{-} \pi^{+} \pi^{0}$
background channel and $<15: 1$ for $p \bar{p} \rightarrow K^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$ background channel (no events passed the cuts).
- Using 10 MeV gamma threshold vs. 30 MeV gamma threshold gives 50\% improvement in signal/background ratio.
- Estimated event rate - 400 events/day.

Background for $h_{c} \rightarrow 3 \gamma$

Background channels

- $p \bar{p} \rightarrow \pi^{0} \pi^{0}, \sigma=31.4 n b$, $(|\cos (\theta)|<0.6)$
- $p \bar{p} \rightarrow \pi^{0} \gamma, \sigma=1.4 \mathrm{nb}$
- $p \bar{p} \rightarrow \pi^{0} \eta, \sigma=33.6 n b$
- $p \bar{p} \rightarrow \eta \eta, \sigma=34.04 n b$

Several EMC options were studies with this channel:

- Possible low energy thresholds - 10, 30, 50 MeV .
- With/without backward endcap.

Parametrization of cross-section

Energy of γ

Event selection

Analised events:

- $20 \mathrm{k}-p \bar{p} \rightarrow h_{c} \rightarrow \eta_{c}+\gamma$
- $100 \mathrm{k}-p \bar{p} \rightarrow \pi^{0} \pi^{0}$
- $100 \mathrm{k}-p \bar{p} \rightarrow \pi^{0} \gamma$
- $100 \mathrm{k}-p \bar{p} \rightarrow \pi^{0} \eta$
- $100 \mathrm{k}-p \bar{p} \rightarrow \eta \eta$

Selection:

- 4C-fit to beam momentum, CL>10-4
- $E_{\gamma 3}$ within [0.4:0.6] GeV
- $\left|\cos \left(\theta_{\gamma 1,2}^{*}\right)\right|<0.6$
- $M\left(\gamma_{1}+\gamma_{3}\right), M\left(\gamma_{2}+\gamma_{3}\right)>1.0 G e V$

Results on $h_{c} \rightarrow 3 \gamma$

Number of γ in event

Conclusions

- All the background is suppressed with signal efficieny 10% at the level of signal/background ratio 10:1.
- No diffrence between different threshold options
- Requirement on 3γ in event make signal efficiency relatively lower for 10 MeV threshold in comparison with 30 or 50 MeV threshods.

Summary

The following signal/background ratios have been obtained for the studied h_{c} decay modes with correspondent event rates at $L=2 \cdot 10^{32}$:

Summary

decay mode	S:B ratio	Event rate (events/day)
$p \bar{p} \rightarrow h_{c} \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp} \gamma$	$1: 180-1: 9$	2200
$p \bar{p} \rightarrow h_{c} \rightarrow K^{0 \times} K^{0 *} \gamma$	$1: 10-2: 1$	400
$p \bar{p} \rightarrow h_{c} \rightarrow 3 \gamma$	$>10: 1$	30

