PID with the EMC

• First Electron ID studies with the EMC

- e/p and shower shape
- neuronal network

Some thoughts on Kaon ID with the EMC

- momentum range <0.8 GeV/c

1

- Full simulation chain in BaBar like software
 - G4 simulation with the complete detector, digitization, full reconstruction for the EMC
 - single particles between 0.2 ... 6.0 GeV/c and $\cos(\Theta) = -0.7 \dots 0.7$
 - appr. 100k e⁺, π⁺, K⁺ each
- Electron can be identified via
 - E/p (E: energy deposit of the cluster; p: reconstructed momentum of the track)
 - shower shape of the cluster
- Studies based on
 - complete EMC reconstruction
 - reconstructed energy deposit of the cluster
 - reconstructed shower shape of the cluster (Zernike momenta)
 - events with only one cluster
 - (no split offs, no e⁺ which produces one or more photons via bremsstrahlung, ...)
 - tracking not taken into account yet
 - no matching of the charged track with the cluster
 - MC truth momentum

B. Kopf, Ruhr-Universität Bochum

- Suitable properties for electron ID
 - e/p, p, Zernike momenta of the cluster
- Problem
 - how to find the optimal cut parameters in the multi-dimensional space
 - possible solution: usage of neuronal networks
- BaBar like software
 - 8 different (supervised and non supervised) neuronal networks available
 - first training of a multi layer perceptron (MLP) already started by splitting the data sample in
 - training files: ~90k for e^+ , π^+ , K⁺ each
 - test files: ~15k for e+ , π +, K+ each
 - 9 input parameters: e/p, p, Zernike00, 31, 33, 42 and Zernike lateral,

2. momentum Φ , 2. momentum Θ

Test sample (all)

PID-TAG, PANDA Collaboration Meeting, Dec. 2006

pand a

B. Kopf, Ruhr-Universität Bochum

~0,02%

panda

Conclusion and outlook

- Electron ID via e/p and shower shape seems to work
- p < 0.8 GeV/c: background >1% for the same fluxes
- p > 0.8 GeV/c: background <1% for the same fluxes
- improvements possible

n a n)d a

- also p and μ should be taken into account
- complete tracking and track matching should be included
- combination with other detectors (e.g. dE/dx, tof, cherenkov)
- studies with different crystal sizes

Kaon ID with the EMC for p < 0.8 GeV/c

• p<0.8 GeV/c: K+ and π + stop in crystals and decay afterwards

p a n)d a

PID-TAG, PANDA Collaboration Meeting, Dec. 2006

B. Kopf, Ruhr-Universität Bochum