

Status of Charmonium Analyses:

$$J/\Psi \pi^+ \pi^-, J/\Psi \gamma$$

March 3-7, 2008 –
Panda Collaboration Meeting - GSI

Outline:

- > Overlook
- $ightharpoonup Y(4260)->J/\Psi \pi^+ \pi^-$ selection and reconstruction
 - ✓ New angular distribution model
 - ✓ Background studies
 - ✓ Study of J/ Ψ π^+ π^- at different energies
- \triangleright J/ Ψ γ selection and reconstruction
- > Summary and Outlook

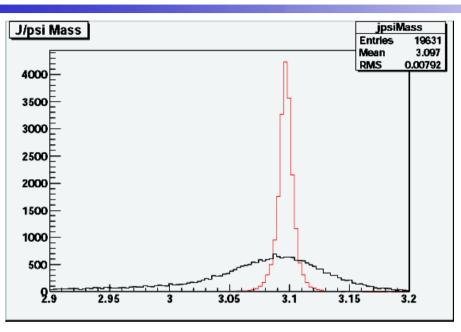
$J/\Psi \pi^+ \pi^-$ selection

- Release 0.15.2
- Detectors: MVD, STT, EMC, DIRC, DCH, MUO, GEM
- List π: PionCombinedLHVeryLoose
- List J/Ψ: JPsiToEEPID.
- List for Electrons: ElectronLHCombinedVeryLoose
- E_{CMS}=3.526, 3.686, 3.872, 4.260, 4.600, 5.000 GeV
- fittingAlgorithm: TreeFitter
- Kinematic fit: vertex/mass constraint
- J/Ψ Mass window [2.5;3.5] GeV
- CL>0.1%

Y(4260)->J/Ψ π^{+} π^{-} selection

Y(4260) was observed for the first time by BaBar in ISR events. (Ref. Phys. Rev. Lett. 95, 142001)

The quantum numbers of this state are $J^{PC} = 1^{--}$.


One possible interpretation of this state is a hybrid.

The idea is to study this state through its decay in $J/\psi \ \pi^+\pi^-$

50K events pp->Y(4260)->J/Ψ π^+ π^-

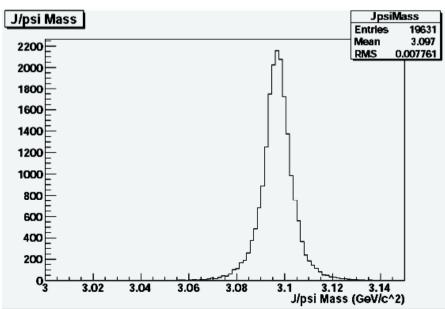
No phase space decay model used

Y(4260)->J/Ψ π^{+} π^{-} selection

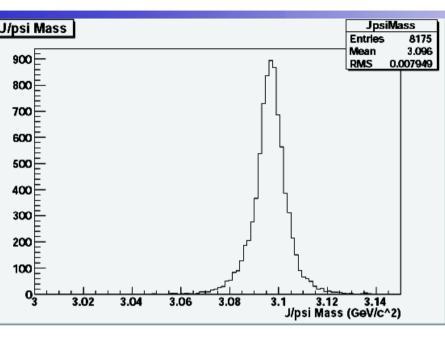
Without 4C fit:

Mean 3.037 GeV

 $\sigma = 0.127 \text{ GeV}$


Efficiency = 54%

With 4C fit:


Mean 3.097 GeV

 σ = 0.008 GeV

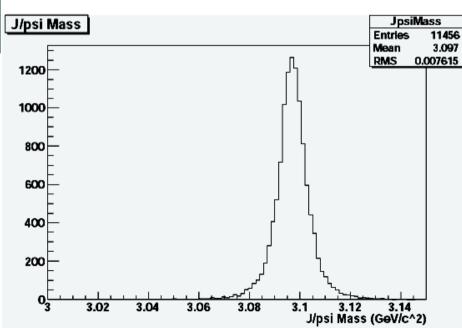
Efficiency= 39%

Y(4260)->J/ $\Psi \pi^+ \pi^-$ selection with 4C fit

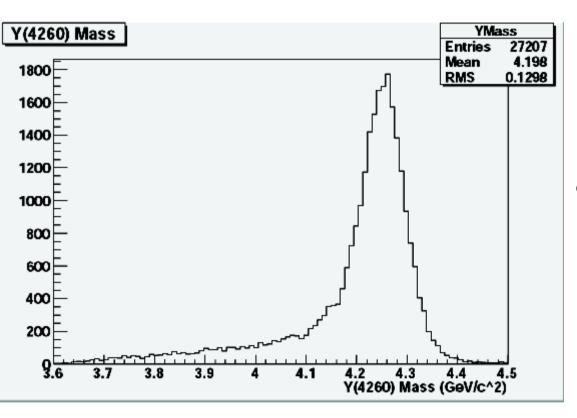
Electron channel:

Mean 3.096 GeV

 $\sigma = 0.008 \text{ GeV}$


Efficiency: 32.7%

Muon channel:


Mean 3.097 GeV

 σ = 0.008 GeV

Efficiency: 45.8%

Y(4260)->J/Ψ π^{+} π^{-} selection

Mean 4.198 GeV

 σ = 0.130 GeV

Efficiency: 54.4%

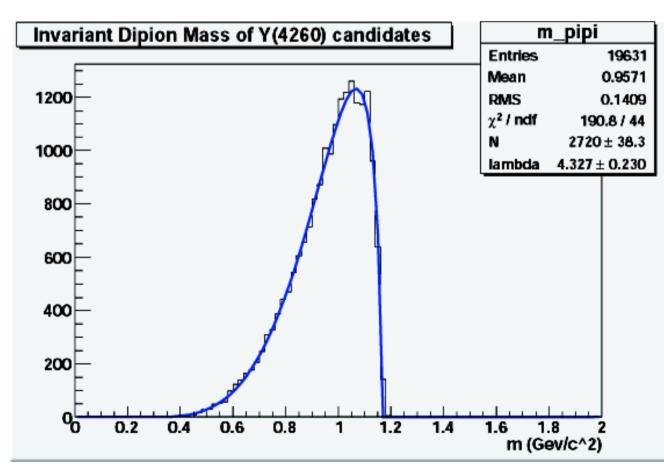
$J/\Psi \pi^+ \pi^-$ dipion invariant mass

The choice is motivated by observations from $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$

Parametrization of the dipion mass in the decay

$$Y(4260)->J/\Psi \pi^+\pi^-$$

$$d\Gamma/dm_{\pi\pi} \propto PHSP \cdot (m_{\pi\pi}^2 - \lambda m_{\pi}^2)^2$$


$$PHSP = \frac{(m^{2}_{\pi\pi}-4m^{2}_{\pi\pi})[M^{4}_{\Psi}+M^{4}_{\Psi'}+m^{4}_{\pi\pi}-2(M^{2}_{\Psi'}m^{2}_{\pi\pi}+M^{2}_{\Psi'}m^{2}_{\pi\pi}++M^{2}_{\Psi}+M^{2}_{\Psi'})]}{4M^{2}_{\Psi'}}$$

Ref. T.N.Pham, B.Pire and T.N. Truong, Phys. Lett. B61 (1976) 183

$J/\Psi \pi^+ \pi^-$ dipion invariant mass

Simulation: λ =4.0

Fit result: $\lambda = 4.3 \pm 0.2$

Y(4260)->J/ $\Psi \pi^+ \pi^-$ background studies

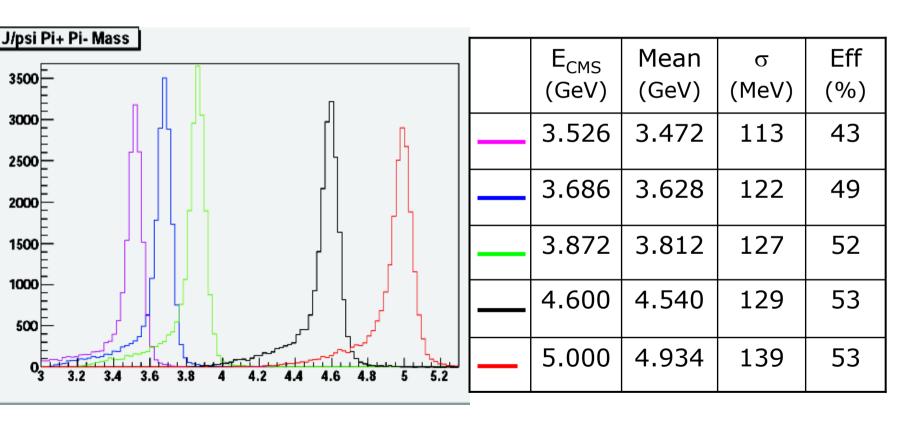
The major background to this channel come from

 $\overline{pp}->\pi^+\pi^-\pi^+\pi^-$ events (two pions may be mis-identified like electrons which can reconstruct one J/ Ψ)

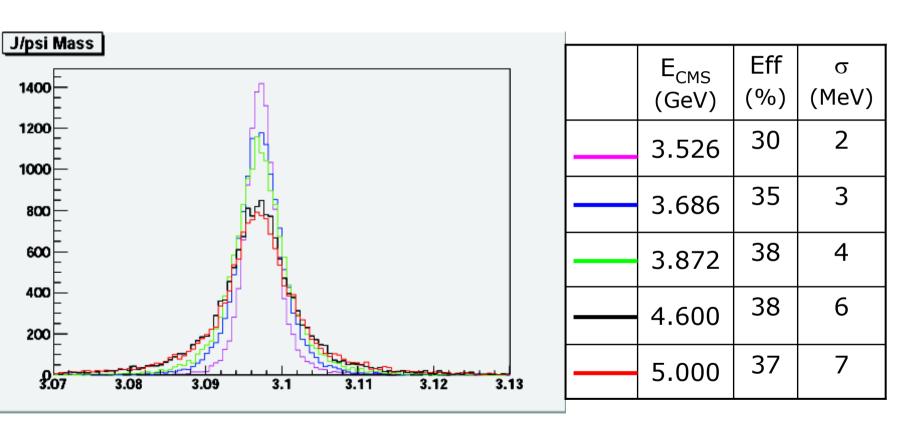
(500.000 background events generated)

Apply same selection of signal events to background events

The Result is: 18 J/Ψ "bad reconstructed"

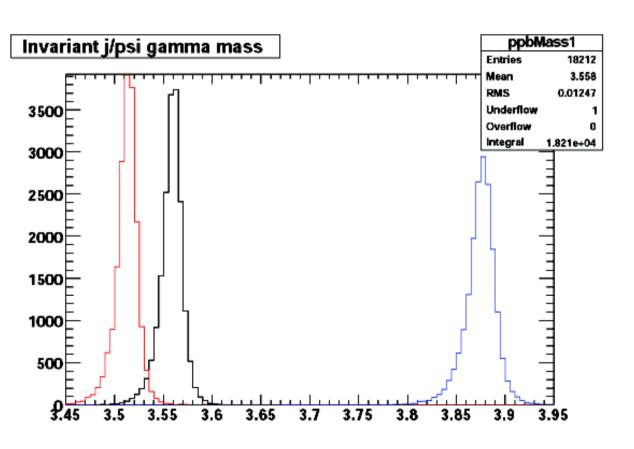

The Ratio Signal/Background = 6

```
\sigma(pp->\Psi')\approx 10 \text{ nb (from E835)}
```


$$\sigma(\overline{p}p -> \pi^+\pi^-\pi^+\pi^-) \approx 0.046 \text{ mb}$$

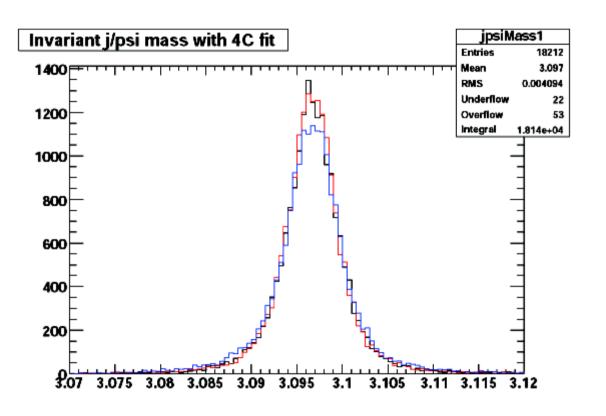
Muon channel under investigation

$J/\Psi \pi^+ \pi^-$ other energies


$J/\Psi \pi^+ \pi^-$ other energies

- List J/Ψ: JPsiToEEPID.
- List for Electrons: ElectronLHCombinedVeryLoose
- List for Gamma: CalorNeutral
- E_{CMS}=3.510, 3.556, 3.872 GeV
- fittingAlgorithm: TreeFitter
- Kinematic fit: vertex/mass constraint
- J/Ψ Mass window [2.5;3.5] GeV
- CL>0.1%

$J/\Psi \gamma$ selection


Isabella Garzia

E _{CMS} (GeV)	Eff (%)
3.510	46
3.556	46
3.872	46

$J/\Psi \gamma$ selection

Isabella Garzia

E _{CMS} (GeV)	Eff (%)
3.510	46
3.556	46
3.872	46

Summary and Outlook J/Ψ π⁺π⁻

- In the release 0.15.2 this channel is well simulated: the efficiency and the resolution are improved.
- The resolution of Y(4260) is good. (0.130 GeV)
- The fit of dipion invariant mass is consistent with the input data.
- The study of the background demonstrates that the signal channel could be well identified.
- To do: study of the muon channel for the background.

Summary and Outlook J/Ψ γ

- We are at a preliminary study, but the results are good.
- To do: Implementation of the right angular distribution.
- To do: Study of the background.

Thanks for the attention!