Status of the Charmonium (Exotic) Analyses for the Physics Book

M. Pelizäus Mar 06, 2007

- charmonium spectroscopy
 - J/Ψη at η(2S) / Ψ(2S) / X(3872) / Y(4260)
- exotics
 - ► Y(3940)→J/Ψω
 - hybrid charmonium: $pp \rightarrow \Psi \eta$ with
 - $\Psi \rightarrow \chi_{c1} \pi^0 \pi^0$
 - $\Psi \rightarrow DD^*$
 - $Y(4320) \rightarrow \Psi(2S)\pi^+\pi^-$

$J/\Psi\eta$ selection

- 40k J/Ψη events at η(2S),Ψ(2S), X(38, and Y(4260)) each
 - $J/\Psi \rightarrow e^+e^-/\mu^+\mu^-$ and $\eta \rightarrow \gamma\gamma$
- selection criteria
 - ► PID: p(l⁺)>0.2, p(l⁻)>0.85
 - kinematic fit w/ beam, J/Ψ and
 η mass constraint (6C)
 - invariant mass
 - m(γγ)∈[0.535;0.565] GeV
 - $m(I^+I^-)$ ∈[3.07;3.12] GeV
 - accept only candidate w/ biggest confidence level CL>0.1% per event

$J/\Psi\eta$ results

reconstruction efficiencies ~28-33%

	Eff. [%]	BR[%]	X sec.	reco. evt/day
η(2S)	28	4.67xBR(η(2S)→J/Ψη)	10nb?	1050xBR(η(2S)→J/Ψη)
Ψ(2S)	31	1.5	10nb	350
X(3872)	33	4.67xBR(X→J/Ψη)	10nb?	1230xBR(X→J/Ψη)
Y(4260)	33	4.67xBR(Y→J/Ψη)	10nb?	1230xBR(Y→J/Ψη)

includes $BR(\Psi(2S){\rightarrow}J/\Psi\eta$) assume int.luminosity of 8pb-1/day

- background suppression at Y(4260)
 - $J/\Psi\eta\eta (\eta \rightarrow \gamma\gamma)$: <1.3.10⁻⁶
 - ► $J/\Psi\eta\pi^{0}$ ($\eta \rightarrow \gamma\gamma, \pi^{0} \rightarrow \gamma\gamma$): <2.7.10⁻⁶
 - ► $J/\Psi \pi^0 \pi^0 (\pi^0 \rightarrow \gamma \gamma)$:
<5.0.10⁻⁵
 - ► $J/\Psi\eta\gamma$ ($\eta \rightarrow \gamma\gamma$): 3.9·10⁻⁴
 - ► $J/\Psi \pi^0 \gamma (\pi^0 \rightarrow \gamma \gamma)$: 3.7.10⁻⁴

$J/\Psi\omega$ selection

- 40k J/ $\Psi\omega$ events at Y(3940)
 - $J/\Psi \rightarrow I^+I^-, \ \omega \rightarrow \pi^+\pi^-\pi^0$
- selection
 - ► PID: p(l⁺)>0.2, p(l⁻)>0.85
 - ► PID: $p(\pi^+)>0.2$, $m(\gamma\gamma) \in [115;150]$ MeV
 - 6C fit: beam, J/Ψ and π^0 mass constraint
 - mass windows
 - $m(e^+e^-)$ ∈ [3.07;3.12] GeV
 - $m(\pi^+\pi^-\pi^0) \in [750;810] \text{ MeV}$
 - J/ $\Psi\omega$ cand. w/ biggest CL>0.1%
 - veto on $\Psi(2S) \rightarrow J/\Psi \pi^+ \pi^-$
 - $m(J/\Psi\pi^{+}\pi^{-}) \in [3.6725;3.7]GeV$

Reconstruction efficiency: 16.5% Product of branching ratios: $BR(Y(3940) \rightarrow J/\Psi\omega) \times 10.7\%$ Assume: int. lum. 8pb-1/day cross sec. of 1nb Expect $BR(Y(3940) \rightarrow J/\Psi\omega) \times 140$ evts/day

$J/\Psi\omega$ background

- investigated background
 - $pp \rightarrow \Psi(2S)\pi^0 \rightarrow J/\Psi\pi^+\pi^-\pi^0$
 - BR=0.32xBR(J/ $\Psi\omega$)
 - ► suppression: 5.10⁻⁵

(without veto: $5 \cdot 10^{-2}$)

Charmonium hybrid

- hypothetical $J^{PC}=1^{-+}$ charmonium hybrid state Ψ
 - ▶ m=4290 MeV; Γ=20 MeV
 - production: $pp \rightarrow \Psi \eta$ at 15 GeV/c
 - ► decay modes: $\Psi \rightarrow \chi_{c1} \pi^0 \pi^0$ and $\Psi \rightarrow D^0 D^{0*}$

- 100k $\Psi\eta$ events at 15 GeV/c
- $J/\Psi \rightarrow e^+e^-$, $\mu^+\mu^-$ selection
 - electron PID: $p(e^+)>0.2$, $p(e^-)>0.2$
 - muon PID: $p(\mu^+)>0.2$, $p(\mu^-)>0.2$
 - ▶ m(I⁺I⁻)∈ [2.98;3.16] GeV
- $\chi_{c1} \rightarrow J/\Psi\gamma$ selection
 - ► m(J/Ψγ)∈[3.48;3.54] GeV
- π^0/η mass windows
 - m(γγ)∈[115;150] and m(γγ)∈[530;565] MeV
- 9C fit: beam, η , χ_{c1} , J/ Ψ and π^0 mass constraint
 - $(\chi_{c1}\pi^0\pi^0)\eta$ cand. w/ biggest CL>0.1%

Reconstruction efficiency: 5.05% Product of branching ratios: BR($\Psi \rightarrow \chi_{c1} \pi^0 \pi^0$)x1.6% Assume: int. lum. 8pb-1/day cross sec. of 0.1nb Expect BR($\Psi \rightarrow \chi_{c1} \pi^0 \pi^0$)x0.6 evts/day

$\Psi \rightarrow \chi_{c1} \pi^0 \pi^0$: Background studies

- background suppression
 - $\chi_{c1} \pi^0 \pi^0 \pi^0 \eta$: BR=0.99xBR($\chi_{c1} \pi^0 \pi^0 \eta$) 7.10⁻⁶
 - ► $\chi_{c0} \pi^0 \pi^0 \eta$: BR=0.037xBR($\chi_{c1} \pi^0 \pi^0 \eta$) 0.3.10⁻⁶
 - ► $\chi_{c1} \pi^0 \eta \eta$: BR=0.4xBR($\chi_{c1} \pi^0 \pi^0 \eta$) 4.10⁻⁶

Charmonium hybrid: (D⁰D⁰*)η

- 100k $\Psi\eta$ events at 15 GeV/c
 - $\Psi \rightarrow D^0 D^{0*}, D^{0*} \rightarrow D^0 \pi^0, D^0 \rightarrow K^- \pi^+ \pi^0, \eta \rightarrow \gamma \gamma$
- $D^0 \rightarrow K^- \pi^+ \pi^0$ selection
 - ► PID: p(K⁺)>0.2, p(π⁺)>0.2
 - kin. fit w/ π^0 mass constraint, CL>0.1%
 - ► m(K⁻π⁺π⁰)∈[1.79;1.93] GeV
- $D^{0*} \rightarrow D^{0}\pi^{0}$ selection
 - kin. fit w/ D⁰ and π^0 mass constr., CL>0.1%
 - ► m(D⁰π⁰)∈[1.95;2.05] GeV
- 11C fit: beam, D^0 , D^{0*} , π^0 and η mass constr.
 - $(D^0D^{0*})\eta$ cand. w/ biggest CL>0.1%

Reconstruction efficiency: 5.3% Product of branching ratios: $BR(\Psi \rightarrow D^0 D^{0*}) \times 0.3\%$ Assume: int. lum. 8pb-1/day cross sec. of 0.1nb Expect $BR(\Psi \rightarrow D^0 D^{0*}) \times 0.1 evts/day$

Summary / Outlook

- charmonium spectroscopy
 - J/Ψη at η(2S) / Ψ(2S) / X(3872) / Y(4260)
 - efficiencies ~28-33%
 - background studies for Y(4260) [extend to other states]
- exotics
 - ► Y(3940)→J/Ψω
 - efficiency 16%
 - $\Psi(2S)\pi^0$ suppression ok [more problematic J/ $\Psi\rho\pi$]
 - hybrid charmonium: $pp \rightarrow \Psi \eta$ with
 - $\Psi \rightarrow \chi_{c1} \pi^0 \pi^0$ and $\Psi \rightarrow DD^*$ [efficieincy ~5%]
 - $\chi_{c1} \pi^0 \pi^0 \pi^0 \eta$, $\chi_{c0} \pi^0 \pi^0 \eta$, $\chi_{c1} \pi^0 \eta \eta$ suppression ok
- investigate photon efficiency loss due to
 - DIRC pre-shower / EMC overlap regions (barrel/FW cap)