

Status of Analysis $\bar{p}p \rightarrow D_s D_{s0}^*(2317)$

Klaus Götzen GSI Darmstadt

PANDA Collaboration Meeting Sep. 2007

panda FAR

Measurement

- Determine width Γ of $D_{s0}^*(2317)$
- Method
 - Energy scan around D_s⁺D_{s0}^{*-} threshold,
 - e.g. 20 steps from -10 MeV to +10 MeV below/above threshold
 - Determine number of reactions of signal type for each step
 - \rightarrow signal cross section energy dependend (excitation function)
 - Shape of excitation function tells you about width

Reconstruction $D_s D_{s0}^*$ (2317)

• Decay Tree @ $\sqrt{s} = 4.306 \text{ GeV} (p_{pbar} = 8.8931 \text{ GeV/c})$

- Data
 - 20k signal events
 - 780k DPM events
- Reconstruction (2 approaches)
 - full exclusive
 - inclusive (reco only recoiling D_s)

Exclusive Reco

- Exclusive Selection
 - apply mass constraint to π^0 and D_s (fit ppbar system)
 - vertex fit of the ϕ
 - mass cut $|m(\phi \pi) m_{Ds, PDG}| < 30 \text{ MeV/c}^2$ (both D_s)
 - Fit Probability for ppbar system P > 0
 - Select candidate with best P per event

- signal = sum m_{miss} + m_{Ds,reco} with $m_{miss} = \left| \vec{p}_{beam} - \vec{p}_{D_s} \right|$

Exclusive Reco

Exclusive Signal

20k Signal events

780k DPM events

Assumption for cross section: $\sigma_B \approx 10^5 \cdot \sigma_S$ Fraction recoʻd evts : $f = BR(D_s \rightarrow \phi \pi)^2 \cdot BR(\phi \rightarrow K^+ K^-)^2 \cdot BR(D_{s0}^* \rightarrow D_s \pi^0) < 4.7 \cdot 10^{-4}$

 $S/B = (\sigma_{S} \cdot \varepsilon_{S} \cdot f) / (\sigma_{B} \cdot \varepsilon_{B}) < 1 \cdot 0.14 \cdot 4.7 \cdot 10^{-4} / 10^{5} \cdot 10^{-6} = 1/1520$

Inclusive Signal

- **Inclusive Selection**
 - mass cut $|m(\phi \pi) m_{Ds, PDG}| < 30 \text{ MeV/c}^2$
 - vertex fit of the ϕ (probability P>0.0001)
 - $n_{\kappa} + n_{\pi} > 3$

780k DPM events

Entries 47224

254

Integral

- How long do we have to measure?
- Assumption:
 - $\sigma_{s} \approx 1 \text{ nb}$
 - int. luminosity/day $L_{int} \approx 10 \text{ pb}^{-1} = 10000 \text{ nb}^{-1}$
 - $N_S/day = \sigma_S \cdot L_{int} = 10000$
- Exclusive reconstruction:

 $- N_{S,reco}/day = N_S \cdot \varepsilon_{S,ex} \cdot f_{ex} = 10000 \cdot 6.58 \cdot 10^{-5} = 0.658$ $N_{S,reco} \stackrel{!}{=} 1000 \Rightarrow t_{ex} = 1510d = 50 \text{ months}$

• Inclusive reconstruction:

$$- N_{S,reco}/day = N_S \cdot \varepsilon_{S,inc} \cdot f_{inc} = 10000 \cdot 7.7 \cdot 10^{-3} = 77$$
$$N_{S,reco} \stackrel{!}{=} 1000 \Rightarrow t_{inc} = 13d$$

- Try to exactly simulate procedure we'll do on data
- For n scanpoint create n histograms with signal+bkg
 - Voigtian = convolution Gauss * Breit-Wigner for signal
 - flat background distribution
- Fit same function to the resulting histograms
 → extract integral of voigtian → # signals
- Fill into a graph for all scanpoints
- Fit excitation function to this distribution
 - \rightarrow extract Γ , mass
- Parameters to vary
 - total number of signals
 - Width Γ
 - Signal to noise ratio S/B
 - (scanpoints number & positions)

Scan – example

Excitation funciton

• Significance = $\Gamma/\Delta\Gamma$ = 7.5 σ

PANDA Collaboration meeting, September 2007, GSI

Scan – more realistic

Scan – more realistic

12300

12200

12100

12000

11900

11700

12300-

12200

12100

12000

11900

11800

11700

11600·

- 8 scanpoints
- N=10000
- Γ=1 MeV
- S/B = 100 (for highest energy, signal region)
- Fit sum histo (get Γ , σ , m); fix for all fits; extract signals

Excitation funciton

• Significance = $\Gamma/\Delta\Gamma$ = 2.3 σ

- Reconstruction of the channel with
 - Exclusive reco (slighly better in S/B ratio)
 - Inclusive reco (100 times shorter measuring time)
- Need to improve/optmimize both selections for better S/B!
- Systematic parameter studies for the scan underways to determine sensitivity for different
 - Γ 's, N_{signal}, S/B ratios, scan regions ...
- Still need to build in the beam smearing (only impact for really small Γ...)