
Measurement of the width of D∗
s0(2317) in pp → D±

s D∗
s0(2317)∓

reactions close to production threshold

K. Götzen

July 25, 2008

Abstract

In the last couple of years various charmonium like states as well as open charm systems
have been discovered mainly by the B-Factories, where many of the resonances properties are
only known to poor accuracy. In order to understand the true nature of these states higher
precision for the essential quantities like mass, width and angular momenta is mandatory.
The aim of this analysis performed on simulated data for the PANDA experiment is to
reconstruct events of the reaction pp → D±

s D∗
s0(2317)∓ and determine the width of the

recoiling D∗
s0(2317)± by measuring the line shape of the energy dependent production cross

section close to threshold.

1 Motivation

2 Analysis Strategy

Main goal of this analysis is the measurement of the width Γ of the D∗
s0(2317). Therefore the

analysis generally has to be performed in two separate steps:

1. Reconstruction of the signal:

• determination of efficiency of signal

• estimate background level (signal to noise ratio S/N)

2. Simulation of energy scan:

• generation of expected obeservable distributions according to results from above

• determination of the line shape of the exitation function

• measurement of width and mass of D∗
s0(2317)

3 Reconstruction of Signal

3.1 Inclusive reconstruction

Figure of merit is the detection of the number reactions of the type

pp → D±
s D∗

s0(2317)∓ (1)
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2 3 RECONSTRUCTION OF SIGNAL

to finally determine the energy dependent production cross section for this channel.

A straight forward analysis strategy usually is a full exclusive reconstruction of the signal in a
particular decay chain. Nevertheless this approach is not persued here because of the arguments
given below.

First of all one has to make a choice about the reconstructed decay channel. The D±
s meson has

a lot of possible decays. One of them known to be reconstructable with a reasonable efficiency
is D±

s → φπ± with φ → K+K− with the combined branching ratio

fB,Ds = B(D±
s → φπ±) · B(φ → K+K−) = 0.044 · 0.492 = 0.022. (2)

Since the only known decay channel of D∗
s0(2317) is the isospin violating D∗

s0(2317) → D±
s π0

(with unknown branching fraction) one also needs to reconstruct the π0 → 2γ and the second
D±

s in the above channel for a full exclusive reconstruction resulting in the total branching ratio
factor

fB,excl = B(D∗
s0(2317) → Dsπ

0)︸ ︷︷ ︸
unknown!

·B(D±
s → φπ±)2 ·B(φ → K+K−)2 ·B(π0 → 2γ) < 4.6·10−4. (3)

Under the asumption of a signal cross section in the order of σ = 1nb at threshold, an integrated
luminosity of about L = 9000/nb per day and efficiency ε ≈ 0.2 this leads to an expected number
of efficiency and branching ratio corrected signal reactions of

Nexcl = σ · L · ε · fB,excl < 9000 · 0.3 · 4.6 · 10−4 = 0.8 detected signals/day. (4)

Even with reasonable low background level this would reflect in at least a couple of hundreds of
days beam time for this particular measurement which is for sure inacceptable.

The strategy followed here instead is an inclusive reconstruction of only the recoiling D±
s . To

ensure that the D±
s really recoils of a D∗

s0(2317) kinematic correlations in the event are exploited
which will be discussed in detail later. In this case the expected number of reactions which can
be detected can be estimated to

Nincl = σ · L · ε · fB,Ds < 9000 · 0.2 · 0.022 = 40 detected signals/day, (5)

so to collect a reasonable number like 500 events only around two weeks beam time would be
required. In addition the anticipated efficiency will most probable be higher since only the three
tracks from the D±

s decay have to be detected in the event.

3.2 Simulation and Datasets

The results presented in this writeup are based on simulations performed with the BaBar like
software framework [?] which then have been analyzed with the framework internal analysis
toolset Simple Compositions.

Since a true energy scan cannot be performed in the simulation due to inaccuracies of the gen-
erator for production below threshold all events have been generated ≈ 5 MeV above threshold
at
√

s = c2 · [m(Ds) + m(D∗
s0(2317))] + 5 Mev = (1968.5 + 2317.3 + 5) MeV ≈ 4291 MeV (6)

under the assumption that efficiencies as well as background will be constant for the scanned
region. The values determined will therefore be used as constant input to the determination of
the width Γ(D∗

s0(2317)).



3.3 Selection 3

Signal events have been generated which the event generator EvtGen[?] with the intrinsic width
of the D∗

s0(2317) set to Γ = 0.1 MeV. To account for the inclusive reconstruction, half of the
events (=Signal 1) were generated in the following way:

pp → D±
s D∗

s0(2317)∓ (7)
D±

s → φπ±, φ → K+K− (8)
D∗

s0(2317)∓ → anything (9)

The second half of the signals (=Signal 2) was generated completely inclusive, i.e.

pp → D±
s D∗

s0(2317)∓ (10)
D±

s → anything (11)
D∗

s0(2317)∓ → anything (12)

to cross check the efficiency determined with the dataset above.

In order to estimate the background level several specific decay channels with similar kinematics
have been investigated. In particular all channels have also a recoiling Ds meson decaying to the
same final state like those in the signal events. Considered have been channels which comprise
a second (non-resonant produced) Ds or D∗

s together with light mesons like one or two pions or
gammas to fill up the available phase space of

√
s− 2 ·m(Ds) · c2 = 4291 MeV − 2 · 1968.5 MeV = 354 MeV. (13)

In addition to that generic hadronic background produced with the event generator DpmGen based
on the dual parton model [?] has been analyzed. Table 1 summarizes the datasets considered.

Channel Number of events
pp → D±

s D∗
s0(2317)∓ (Signal 1) 40 000

pp → D±
s D∗

s0(2317)∓, D±
s → any (Signal 2) 40 000

pp → D±
s D∓

s π0 40 000
pp → D±

s D∓
s 2π0 40 000

pp → D±
s D∓

s π+π− 40 000
pp → D±

s D∗∓
s 40 000

pp → D±
s D∗∓

s π0 40 000
pp → D±

s D∓
s γ 40 000

pp → D±
s D∗∓

s γ 40 000
DPM generic 5 000 000

Table 1: Datasets

3.3 Selection

The first step on the way to determine the number of signal reactions the D±
s mesons have to be

reconstructed and isolated from background as good as possible. The procedure to create D±
s

candidates was:

1. Select kaon candidates from charged tracks with veryLoose PID criterion1 (will be tightend
later for finding an optimum)

1PID selection is based on a global likelihood function LH. Available criteria are: veryLoose (LH > 0.2),
loose (LH > 0.8), tight (LH > 0.95), veryTight (LH > 0.99)
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2. Create a list of φ candidates by forming all combinations of a negative with a positive
charged kaon candidate

3. Kinematic fit of the single φ candidates with vertex constraint2

4. Select pion candidates from charged tracks with veryLoose PID criterion

5. Combine φ candidates with pion candidates to form D±
s candidates

6. Kinematic fit of the D±
s candidates with vertex constraint

On the so preselected candidates the following requirements have been applied in addition:

1. Probability of φ vertex fit: Pφ > 0.001

2. Probability of D±
s vertex fit: PDs > 0.001

3. φ mass window: |m(K+K−)−mPDG(φ)| < 10 MeV/c2

4. φ decay angle3: |θdec| > 0.5

5. D±
s mass window: |m(φπ±)−mPDG(D±

s )| < 30 MeV/c2

Fig. 1 shows the corresponding distributions according to the upper selection criteria for the
particular case of very loose kaon selection.

Plot (a) shows the spectrum of the invariant K+K− mass, in (b) the invariant K+K−π± mass
is displayed, which is in fact the mass of the D±

s candidates. In plot (c) the decay angle of the φ
candidates is shown. As expected in a decay of a polarized4 vector meson into two pseudoscalar
mesons the distribution of cos(θdec) follows f(x) = a · x2. Finally figure (d) shows the missing
mass of the recoil D±

s which is defined as

mmiss = |Pinit − PDs| (14)

where PDs denotes the 4-momentum of the Ds candidate and Pinit the 4-momentum of the initial
pp system given by

Pinit = (px, py, pz, E · c) = (0, 0, 8824, 9812) MeV (15)

for the chosen center-of-mass energy of Ecms = 4291 MeV, assuming the beam going in positive
z direction. As expected a peak around m = 2317 MeV/c2 appears matching the mass of the
D∗

s0(2317).

The black crosses in the figures represent all reconstructed candidates whereas the shade area
corresponds to candidates failing the so called Monte Carlo Truth (MTC) match5 The slight
peaking originates from D±

s ’s resp. φ’s appearing in the D∗
s0(2317) decay tree which by chance

decay to the same channel D±
s → φπ± or φ → K+K− as in the signal. The MCT match of

2vertex constraint: fit candidates under assumption, that all daughter trajectories originate from a common
point in space time.

3The decay angle is defined as the angle between the direction of motion of the reconstructed φ candidate in
the laboratory frame and the direction of motion of one of the kaons in the frame of the φ.

4Since the φ originates from a decay of a pseudoscaler (the Ds) itself together with another pseudoscalar (the
π±), its spin orientation is polarized.

5The Monte Carlo Truth match is the check whether a decay tree has been exactly reconstructed as it was
generated.
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Figure 1: Distributions for reconstructed signal events of type 1 (Signal 1; see text). (a) Spectrum
of the invariant mass m(K+K−), (b) invariant mass m(K+K−π±), (c) distribution cos(θdec) of the φ
candidates’ decay angle, (d) missing mass for the D±

s candidates according to the initial 4-momentum of
the pp system. Black histograms correspond to all reconstructed combinations, the shaded area represents
combinations failing the MCT match (see text).

(a) (b)

(c) (d)
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Figure 2: Reconstruction of signal events type 1. (a) Correlation of missing mass and invariant D±
s

mass. (b) The sum mmiss + m(D±
s ) as observable for counting signal events.

(a) (b)

course only accepts correctly reconstructed D±
s from the recoil side (so that the rest of the event

really corresponds to an unreconstructed D∗
s0(2317) decay.) The red vertical lines symbolize the

selection requirement defined in the list above.

It is clearly visible that the signal events can be successfully reconstructed on one side, on the
other side the resolutions of all appearing signal peaks is of the order 10-15 MeV/c2 which will
make background suppression difficult due to wide mass windows. To enhance to signal to noise
ratio when counting the number of signal events, the kinematic correlation of the missing mass
and the mass of the D±

s candidate is exploited.

When in general performing exclusive analysis, the signal quality can be enhanced significantly
by performing a so called 4 constraint fit to the reconstructed decay tree. This takes into account
that the sum of all 4 momenta in the decay tree have to add up to the 4 momentum of the intial
system which is basically defined by the precisely know beam energy6.

Since this measurement is based on inclusive reconstructed Ds mesons it is not possible to fit with
4 constraints because not all particles in the event have been reconstructed. Nevertheless what
is the case is that the (still well known) initial 4 momentum is splitting into the two particles
Ds and D∗

s0(2317) very close to their production threshold. When computing the invariant
mass m(Ds) with e.g. a strong deviation to higher or lower values due to poor resolution, the
mass m(D∗

s0(2317)) which is actually computed as the missing mass m(D∗
s0(2317)) ≡ mmiss =

|Pinit − PDs| has basically the same deviation to the opposite direction.

Fig. 2 (a) shows how the correlation of m(Ds) and mmiss looks like.

Both the missing mass and the invariant mass m(D±
s ) have a relative poor resolution whereas

the correlation of those two is big which results in a very narrow ellipsis. This can be exploited
by considering the sum msum = mmiss + m(D±

s ) which corresponds to a projection of the 2
dimensional plot to a decreasing 45◦ diagonal or f(x) = −x. This leads to plot (b) exhibiting
a very narrow peak with a resolution of the order ≈ 1 MeV/c2. Therefore during this analysis

6Depending on the HESR operating mode the projected beam resolution will be either dp/p = 10−4 or 10−5.
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above sum of masses msum will be considered as the observable to count the number of signal
events. It will be demonstrated later that background channels show a different behaviour and
therefore can be reasonably well separated from signal in this projection. In particular there is
almost no combinatoric background within signal events reflected by the almost invisible shaded
area correspondig to canidates with MCT match failed.

In Fig. 2 (b) an additional line shape fit has been performend. The partly empirical fit model is
chosen to be a convolution of a ordinary (non-relativistic) Breit Wigner function BW (m) with
a Gaussian G(m)7 with a Fermi like damping:

f(m) = A ·
[∫ +∞

−∞
G(x′;m0, σ) ∗BW (m− x′;m0,Γ) dx′

]
· 1

1 + exp
(

m−mq

τ

) (16)

with intensity A, running variable m, resonance pole mass m0, resonance width Γ, reconstruction
resolution σ, phase space limit mq and decay parameter τ (all except A in [GeV/c2]).

The goodness of the fit (i. e. appropriateness of fit model) is of no relevance for this particular
study since event counts for efficiency determination can be extracted by counting histogram
entries due to absence of background. Therefore a signal region is defined by

4280 MeV/c2 < msum < 4291 MeV/c2 (17)

which is marked by the two vertical lines in Fig. 2 (b). This region will be used to count numbers
of signals as well as residual background candidates for the purpose of computing efficiencies.

For the particular example here with very loose kaon identification we find S = 14490 entries in
the signal region corresponding to an efficiency of ε = 36.2%

As a cross check for the signal quality as well as background level arising within signal events
the same analysis chain has been applied to totally inclusive signal events (Signal 2; see above),
where also the recoiling Ds decays generically. Under the assumption of the same efficiency as
above one expects for this configuration a number S′exp ≈ S ·fDs = 314 entries in the signal box.
Counting in Fig. 3 (f) results in S′ = 320 which agrees very well with the expectation. It can be
concluded that there is no systematic effect in efficiency measurements due to the specific decay
channel of the D±

s meson in signal events.

7Voigtian distribution: Convolution of a Gaussian with a Breit-Wigner, also known as real part of the Faddeeva
function resp. complex error function [?].



8 3 RECONSTRUCTION OF SIGNAL

]2) [GeV/c
-

 K+m(K
1 1.02 1.04

co
un

ts

0

10

20

30

40

50

60

70

80

 candidate massφ

]2) [GeV/cπ φm(
1.9 1.95 2 2.05

co
un

ts

0

10

20

30

40

50

60

70

80

 candidate masssD

)decθcos(
-1 -0.5 0 0.5 1

co
un

ts

0

2

4

6

8

10

12

14

16

18

20

22

24

 decay angleφ

]2 [GeV/cmissm
2.25 2.3 2.35 2.4

co
un

ts

0

5

10

15

20

25

30

35

40

45

*)
s0

 aka m(Dmissm

]2) [GeV/cπ φm(
1.9 1.95 2 2.05

]2
 [G

eV
/c

m
is

s
m

2.25

2.3

2.35

2.4

Ds vs. mmissm

Integral     322

A         0.03025± 0.12294 
    0m  0.00008± 4.28567 

   σ  0.00024± 0.00059 

   Γ  0.00040± 0.00125 
    qm  0.00246± 4.28900 

     τ  0.00220± 0.00216 

]2 [GeV/cmiss + mDsm
4.27 4.28 4.29

co
un

ts

0

5

10

15

20

25

30

35

40

45 Integral     322

A         0.03025± 0.12294 
    0m  0.00008± 4.28567 

   σ  0.00024± 0.00059 

   Γ  0.00040± 0.00125 
    qm  0.00246± 4.28900 

     τ  0.00220± 0.00216 

Integral     322

A         0.03025± 0.12294 
    0m  0.00008± 4.28567 

   σ  0.00024± 0.00059 

   Γ  0.00040± 0.00125 
    qm  0.00246± 4.28900 

     τ  0.00220± 0.00216 

 (mc match)Ds + mmissSum m

Figure 3: Reconstruction of full inclusive signal events. Description of plots: see Fig. 1 and Fig. 2
.

(a) (b)

(c) (d)

(e) (f)
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3.4 Backgrounds

This sections shows how much residual background is populating the signal region. The plots
here are shown for veryLoose kaon identification like for the signal channels. The summary of
the optimization for different identification criteria can be found in Table 2. The distributions
shown for all background channels in Reffigfig:bg1 – Fig. 11 are

1. Ds candidate mass m(φπ) (upper left)

2. missing mass mmiss (upper right)

3. 2-dimensional correlation of latter two (lower left)

4. the sum msum of both (lower right)

Fig. 4 – Fig. 10 show the distributions for the specific channels, whereas Fig. 11 show the results
for generic background events generated with the DPM generator. It can be seen clearly that the
missing mass is shaped either as a step function or exhibits a peaking behaviour for the specific
background channels due to the limited available phase space, resulting in the correlation plots
as a blop in the signal region.

This also emphasizes the choice of msum as a good observable, since the distribution follows
a phase space background shape for all channels. The background model chosen to determine
background levels is the so called Argus function[?] defined by

fbg(m) = As ·m ·
√

1− (m/m0)2 · exp
[
c ·

(
1− (m/m0)2

)]
(18)

with amplitude parameter As, phase space limit m0 and shape parameter c. Again the shaded
area in the plots corresponds to candidates failing the Monte Carlo Truth match. Certainly in
Fig. 4 – Fig. 10 most of the candidates are reconstructed correctly since there are ’true’ recoil
D±

s . The DPM generator is know to produce an unrealistic low level of charm quarks reflected
in the complete absence of correctly reconstructed D±

s mesons in Fig. 11.
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3.4.1 BG 1: pp → D±
s D∓

s π0
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Figure 4: Background channel 1: pp → D±
s D∓

s π0
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3.4.2 BG 2: pp → D±
s D∓

s 2π0
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Figure 5: Background channel 2: pp → D±
s D∓

s 2π0
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3.4.3 BG 3: pp → D±
s D∓

s π+π−
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Figure 6: Background channel 3: pp → D±
s D∓

s π+π−
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3.4.4 BG 4: pp → D±
s D∗∓
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Figure 7: Background channel 4: pp → D±
s D∗∓

s
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3.4.5 BG 5: pp → D±
s D∗∓

s π0
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Figure 8: Background channel 5: pp → D±
s D∗∓

s π0
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3.4.6 BG 6: pp → D±
s D∓

s γ
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Figure 9: Background channel 6: pp → D±
s D∓

s γ
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3.4.7 BG 7: pp → D±
s D∗∓

s γ
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Figure 10: Background channel 7: pp → D±
s D∗∓

s γ
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3.4.8 BG 8: DPM generic
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Figure 11: Background channel 8: Generic hadronic background (DPM generator)
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3.5 PID Optimization

In principle to find an optimal selection for supressing background and thus optimizing the
significance of the signal there are a lot of parameters like all the kinematic cuts and mass
windows, which have to be varied. Up to now this procedure has only been performed for the
kaon identification quality.

There are four different selection criteria available based on a global PID likelihood function LH
which are:

• very loose (VL): LH > 0.2

• loose (L): LH > 0.8

• tight (T): LH > 0.9

• very tight (VT) : LH > 0.95

All these four criteria for kaon identification have been applied to the selection procedure and
the number of residual candidates for signal and the different backgrounds in the signal region
Eq. 17 of msum have been counted. Assuming values for the cross sections of these backgrounds
relative to that of the signal one can compute the expected signal-to-noise ratio rSN depending
on PID.

For all hadronic modes the cross sections are assumed to be in the same order of magnitude, the
electromagnetic modes involving a γ were arbitrarily scaled down by a factor 10 (factor α/αs

perhaps would have been more realistic but neither is known exactly nor seems to be of big
relevance). The relative cross section of generic backgrounds here is ad hoc assumed to be a
factor 106 higher than the signal. This assumption can be significantly wrong. The total cross
section for pp collisions in the energy region relevant for the analysis performed here according
to Eq. 15 is of the order

σ(pp → anything) ≈ 60 mb (19)

which would lead to a relative cross section of

σ(pp → anything)
σ(pp → DsD∗

s0(2317))
≈ 60 mb

1 nb
= 6 · 108 (20)

resulting in a modified estimate for the signal-to-noise ratio in the next to last line of Table 2 in
the 5th column (ε(T)[%]) of rSN > 1 : 27000 which is quite a limited statement. Thus in order
to improve the conclusive power one would need at least a factor of 1000-10000 more generic
events which is unfeasible for the time being.

The results of this study, i.e. the effciencies are given in Table 2. In cases where no candidate
was reconstructed in the signal region, the efficiency values are given as an upper limit computed
with the assumption that one entry would have been observed.

It is obvious that the expected signal-to-noise ratio will be completely governed by the generic
hadronic background since the expected values for rSN in case of ignoring the contributions
from the DPM generator are constant at about rSN ≈ 2. Due to limited Monte Carlo statistics
for the generic background it cannot be made a strong statement about feasibility or a realistic
signal-to-noise ratio so far.

Apparently there nevertheless is an optimum for kaon identification with criterion tight indi-
cating rSN better than 1:45 for the current scenario.
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Channel rel. X-sec ε(VL)[%] ε(L)[%] ε(T)[%] ε(VT)[%]
Signal 1 36.2 28.1 21.0 19.0
pp → D±

s D∓
s π0 1 0.8 0.6 0.5 0.4

pp → D±
s D∓

s 2π0 1 6.9 5.2 4.0 3.6
pp → D±

s D∓
s π+π− 1 8.1 6.1 4.6 4.2

pp → D±
s D∗∓

s 1 0.0 0.0 0.0 0.0
pp → D±

s D∗∓
s π0 1 3.7 2.8 2.1 1.9

pp → D±
s D∓

s γ 0.1 0.6 0.4 0.3 0.3
pp → D±

s D∗∓
s γ 0.1 1.1 0.9 0.6 0.6

DPM generic 106 1.8 · 10−2 1.9 · 10−3 < 9.4 · 10−4 < 9.4 · 10−4

rSN (w/ DPM) – 1 : 495 1 : 68 > 1 : 45 > 1 : 50
rSN (w/o DPM) – 1.86 1.90 1.89 1.88

Table 2: PID optimization summary

4 Simulation of Energy Scan

4.1 Excitation Function

Like mentioned in the introduction the observable to determine the properties of the D∗
s0(2317)

resonance (in particulay its width) basically is the dynamic behaviour of the cross section
for its production together with a recoiling Ds meson close to the threshold energy Ethr =
[m(D±

s ) + m(D∗
s0(2317))] · c2.

Generally the cross section for the production of two particles with spectral functions according
to

ρi(m) =
1
π
· Γi/2
(m−mRi)2 + (Γi/2)2

(21)

with resonances pole mass and width mRi and Γi is given by the integral

σ(s) = |M |2
∫ +∞

−∞
dm1

∫ +∞

−∞
dm2 ρ1(m1)ρ2(m2) · p ·Θ(

√
s−m1 −m2). (22)

Here m1 and m2 are the running masses,
√

s is the total center-of-mass energy, M the (usually
unknown) matrix element of the scattering process and p the breakup momentum of the two
resonances in the cms frame with

p2(
√

s,m1,m2) =

[
s− (m1 + m2)2

]
·
[
s− (m1 −m2)2

]
4s

. (23)

For the process considered in this analysis the width of one of the resonances, namely for the Ds

meson, can be taken as zero. Thus its spectral function degenerates to a delta function leading
to the simplified integral (with md ≡ m(Ds)):

σ(s)
|M |2

=
∫ +∞

−∞
dm1

∫ +∞

−∞
dm2 ρ1(m1)δ(m2 −md) · p ·Θ(

√
s−m1 −m2) (24)

=
∫ +∞

−∞
dmρ1(m) · p ·Θ(

√
s−m−md) (25)

=
∫ √

s−md

−∞
dm ρ1(m) · p (26)
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Substituting with the terms from Eq. 23 and Eq. 21 under the assumption that M is approxi-
mately constant in this energy region, the line shape of the cross section for this process looks
like

σ(s)
|M |2

=
Γ

4π
√

s

∫ √
s−md

−∞
dm

√
[s− (m + md)2] · [s− (m−md)2]

(m−mR)2 + (Γ/2)2
. (27)

4.2 Scan Procedure

In reality the measurement reported about will be performed in the following (or a similar) way:

1. Data taking at n energy values around threshold energy Ethr = [m(D±
s ) + m(D∗

s0(2317))] ·
c2, e. g.

Ethr −∆Emax < E + i ·∆E < Ethr + ∆Emax, 0 < i < n (28)

for step number i with step size ∆E and width of energy region 2 ·∆Emax.

2. Perform selection and reconstruction resulting in a distribution msum consisting of sig-
nal events reflected in a resonance peak close to the phasespace limit and phasespace
distributed background events.

3. Fit an appropriate model to the line shape, e.g. consisting of functions like Eq. 16 and
Eq. 18 to describe the signal and background shape

4. Determine the number of signal events Si for each of these mass histograms

5. Enter all the pairs (Ei, Si) in a graph and fit the line shape of the resulting function of the
energy dependent cross section described by Eq. 27

6. Calculate the mass and width m(D∗
s0(2317)) ± ∆m(D∗

s0(2317)) and ΓDs0 ± ∆ΓDs0 from
the fit parameters

7. Significance of this measurement is then given by Γ/∆Γ

Since there is no realible possibility to generate signal below threshold the scenario of an energy
scan will be effectively simulated as realistic as possible by replacing steps 1. and 2. of the
above procedure by ’guessing’ an according spectrum of the mass msum:

i. Chose the following parameters (some reasonable values in paranthesis):

• Width ΓDs0 of the D∗
s0(2317). (≈ 0.05 MeV – 3 MeV; PDG: Γ < 3.8 MeV, CL=95%)

• Beam time Tbeam for the complete measurement; assumptions are signal cross section
of σS = 1 nb at threshold energy Ethr and an integrated luminosity of L = 9 pb−1/day.

• Energy region ∆Emax for scan. (≈ 2Γ – 3Γ)

• Number n of energy steps (→ ∆E = 2 ·∆Emax/n) (7 – 15)

• Signal-to-Noise ratio rSN

• Efficiency factor ε · fB,Ds
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ii. Compute the number of expected signal events at energy Ei as

Si = σ(Ei/c2) · Ltot

n
· ε · fB,Ds = σS ·

fex(Ei + δE)
fex(Ethr)

· L · Tbeam

n
· ε · fB,Ds (29)

where δE is related to the uncertainty of the beam energy δp and is gaussian distributed
around 0 with σE = 150 keV. 8

iii. Compute the number of expected background events at energy Ei. In principle this number
is assumed to be constant, but it has to be taken into account the shift of the phase space
limit (i. e. the energy Ei) which will shift the position of the distribution relative to the
signal. Therefore setup the background model function Eq. 18 with fixed (and more or less
arbitrary) parameter values according to those found for the specific background channels,
except parameter mq, which has to be set to the energy Ei. The parameter rSN defined
above is assumed to apply for the highest energy value En ≡ Ethr + ∆Emax considered.
Thus for En and the region defined in Eq. 17 with width ∆ESR it is B′

n = rSN · Sn. For
all lower energies Ei < En the region Ei−∆ESR < m · c2 < Ei has to contain this number
of entries. The number of entries Bi finally filled in the histogram with lower limit mmin

is then given by

Bi =

∫ Ei/c2

mmin

fbg(m) dm∫ Ei/c2

(Ei−∆ESR)/c2
fbg(m) dm

· rSN · Sn (30)

iv. For each energy Ei create a histogram and fill it with Si randomly generated entries
according to Eq. 16 and Bi generated entries according to Eq. 18.

v. Follow the procedure from above beginning at step 3.

Of course to do systematic studies for finding a global optimum of the procedure, there is high
dimensional parameter space to be investigated. This has not been done up to now.

Fig. 12 shows the mass histograms as a result for the upper procedure with the parameters

• T = 14 d, rSN = 1/3, Γ = 1 MeV/c2, ∆Emax = 2 MeV, n = 12,

with increasing energy from left to right and top to bottom.

In Fig. 13 (a) the generated excitation function is show with a fit revealing exactly the parameters
which have been put in as a cross check. In Plot (b) the reconstructed excitation function
consisting of the event numbers retrieved from the individual fits on the histograms shown in
Fig. 12 is displayed. The fit in this example would give the result:

Γ = (1.0± 0.3) MeV → Significance =
1.0
0.3

= 3.3σ (31)

The same procedure with parameters

• T = 28 d, rSN = 1/30, Γ = 0.5 MeV/c2, ∆Emax = 1 MeV, n = 12
8The appropriate way to count for the beam uncertainty would certainly be to convolute the excitation function

fex with a Gaussian instead, which has not been performed for the time being.
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results in mass histograms shown in Fig. 14 and a line shape fit presented in Fig. 15. Here the
significance and the accuracy is as expected lower:

Γ = (0.89± 0.91) MeV → Significance =
0.88
0.91

= 1.0σ (32)

It should be stressed here that the latter result is not necessarly representative for fits with such
a high background level, so worse results can be expected with a low signal-to-noise ratio.

In general the systematic effects of the procedure still have to be investigated to draw serious
conclusions from the method and analysis results presented.
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Figure 12: The individual mass distributions msum generated for energies Ei (Scan 1)
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Figure 13: Fit to the excitation function for (a) generated and (b) fitted numbers. (Scan 1)
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Figure 14: The individual mass distributions msum generated for energies Ei (Scan 2)
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Figure 15: Fit to the excitation function for (a) generated and (b) fitted numbers. (Scan 2)
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5 Limitations

In this section some final remarks and limitations are listed which will have to be investigated
on the long run, i.e. either for the ’large’ Physics Book or the real world analysis.

• Systematic investigation of the influence of the simulated width of the D∗
s0(2317) on the

distribution of the observable msum. Is its shape and width behaving ’gentle’?

• Production of simulated data at different energies (also closer to threshold or even slightly
below). Does that spoil the method? Is the shape of the mass distribution strongly
distorted? Is the efficiency constant?

• Larger sample of generic background to get better estimate of the expected signal-to-noise
ratio rSN . Might be crucial for feasibility in general.

• Perhaps tighten selection criteria.

• Find more appropriate model to describe the signal. Maybe relativistic Breit-Wigner with
Blatt-Weisskopf damping. Examine systematic uncertainties originating from wrong fit
model. Do the same for background shape.

• To take into account the beam jitter accordingly convolute the excitation function Eq. 27
with the appropriate beam resolution model (e.g. a Gaussian in the simplest case).

• Perform systematic studies for the energy scan with different parameter settings. What
is the optimum scan region? Number of scan points? Systematic shift of the fit results
under particular circumstances?

• Determine dependency of the significance from parameter settings. Detector limitations
for the significance of measurement (something like ’smallest width one will be able to
measure’).
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A Source Codes

A.1 Simulation of Energy Scan

#include "TF1.h"

#include "TH1F.h"

#include "TMath.h"

#include <iostream>

#include "TCanvas.h"

#include "TRandom3.h"

#include "TGraphErrors.h"

#include "TMinuit.h"

#include "TLine.h"

#include "TGraphErrors.h"

#include "TSystem.h"

#include "time.h"

#include "TList.h"

void config_histo(TH1 *h, TString tx, TString ty)

{

h->SetLineWidth(2);

h->GetXaxis()->SetTitleOffset(1.2);

h->GetXaxis()->SetTitleColor(1);

h->GetXaxis()->SetLabelSize(0.06);

h->GetXaxis()->SetTitleSize(0.06);

h->GetXaxis()->SetNdivisions(505);

h->GetYaxis()->SetTitleOffset(1.7);

h->GetYaxis()->SetTitleFont(42);

h->GetYaxis()->SetLabelSize(0.06);

h->GetYaxis()->SetTitleSize(0.06);

h->SetXTitle(tx);

h->SetYTitle(ty);

}

Double_t dampvoigt(Double_t *x, Double_t *par)

{

double result=par[0]*TMath::Voigt(x[0]-par[1],par[2],par[3],4)*(1/(1+exp((x[0]-par[4])/par[5])));

return result;

}

Double_t argusBG(Double_t *x, Double_t *par) // voigtian = convolution of gauss with breit wigner

{

double t=x[0]/par[1];

if (t>=1) return 0;

double u=1-t*t;

return x[0]*par[0]*TMath::Power(u,par[3])*exp(par[2]*u);

}

Double_t dampvoigtArgus(Double_t *x, Double_t *par)

{

return dampvoigt(x,par)+argusBG(x,&(par[6]));

}

Double_t voigt(Double_t *x, Double_t *par) // voigtian = convolution of gauss with breit wigner

{

return (par[0]*TMath::Voigt(x[0]-par[1],par[2],par[3],4)+par[4]);

}

Double_t resonance(Double_t *y,Double_t *par)
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{

Double_t crosss = 0, lambda;

Double_t vf = 0;

if (par[0] != 0)

{

lambda = (y[0] - 2*par[0]) / par[1]; //y[0]=sqrt(s)

vf = sqrt(par[0] * par[1]); //par[0]=mr,par[1]=gamma

static TF1 *f = new TF1("f","sqrt(([2] - 2 * [0]) / [1] - x) / ( x * x + 1)");

f->SetParameters(par[0],par[1],y[0]);

crosss = f->Integral(-1000,lambda);

crosss = par[2]*crosss * vf / TMath::Pi()+par[3];

//cout <<lambda<<endl;

}

return crosss;

}

Double_t resonance2(Double_t *y,Double_t *par)

{

Double_t crosss = 0, lambda;

double mds=1968.5;

double mr=par[0];

double gamma=par[1];

double mrd=mds+mr;

double dmrd=mr-mds;

Double_t vf = 1;

if (par[0] != 0)

{

lambda = 2/gamma*(y[0]-mrd);

//vf = sqrt((mrd*mrd-dmrd*dmrd)/(mrd*gamma));

static TF1 f("f","sqrt(2/[1]*([2]-[0])-x)/ ( x * x + 1)");

f.SetParameters(mrd,gamma,y[0]);

crosss = f.Integral(-1000,lambda);

crosss = par[2]*crosss * vf / TMath::Pi();//+par[3];

//cout <<crosss<<endl;

}

return crosss;

}

void fit_graph_new2(double nTotDays=1.0, double NS=1, double Gamma=1.0, double win=2., int nbins=15, bool equal=true)

// N = number of signal events

// NS = Noise-to-signal ration -> num of background evts B= NS*N

// Gamma = width of the DsJ

// win = window around threshold for the scan

// nbins = number of scanpoints

{

//TCanvas *c1 =new TCanvas("c1","c1",700,500);

TCanvas *c3 =new TCanvas("c3","c3",650,900);

c3->Divide(1,2);

TCanvas *c2=new TCanvas("c2","c2",650,900);

if (nbins<=9) c2->Divide(3,3);

else if (nbins<=12) c2->Divide(3,4);

else c2->Divide(3,5);

TCanvas *c4=new TCanvas("c4","c4",650,900);

if (nbins<=9) c4->Divide(3,3);

else if (nbins<=12) c4->Divide(3,4);

else c4->Divide(3,5);

//TCanvas *c1=new TCanvas("c1","c1",700,500);

// ***********

// Parameters + constants
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// ***********

bool equalscanpoints = equal; // use equally distributed points or more dense scan points around threshold

double nDays = nTotDays/nbins;

double sigXsec = 1.0; // cross section [nb]

double lumiDay = 8800; // int lumi/day [nb-1]

double effFact = 0.25*0.044*0.492; // efficiency factor times BR factors

double sigma = 0.6; // resolution of the detector (for the Dsj signal peak); don’t mix up with beam resolution!

double beamerr = 0.15; // beam uncertainty in [MeV]

double mdsj = 2317.3; // mass of the DsJ [MeV]

double mds = 1968.5; // mass of the Ds [MeV]

double widthFactor=4.0;

double thresh=mdsj+mds; // threshold for scan

double sigwinup=thresh+(sigma+Gamma/2)*widthFactor;

double sigwinlow=thresh-(sigma+Gamma/2)*widthFactor;

double sigwin=sigwinup-sigwinlow;

double mlow=thresh-2.5*sigwin; // lower limit of mass histos

double mhigh=thresh+0.55*sigwin; // upper limit of mass histos

double low = thresh-win; // lower limit of scan

double up= thresh+win; // upper limit of scan

//double BGwidthFactor = (mhigh-mlow)/(sigma+Gamma)/6;

double upshift=0.2;

int hbins=80; // number of bins for mass histos

TH1F *mass[20]; // the mass histos (we only need nbins of them)

TH1F *hbg[20]; // histos for bg only (for automated fitting)

TRandom3 rand; // a random generator

rand.SetSeed(time(0));

// ************************

// define the functions

// ************************

// the voigtian (= convolution of gauss with breit wigner) to fit the mass histo

TF1 *fsigbg=new TF1("fsigbg",dampvoigtArgus,mlow,mhigh,10);

fsigbg->SetParNames("A_{s}","m_{0}","#sigma","#Gamma","m_{q}","#tau","A_{b}","m_{t}","c","p");

fsigbg->SetParameters(10,thresh,sigma,Gamma,4286,0.1,100,4286,-30,0.5);

fsigbg->SetLineStyle(2);

fsigbg->SetLineWidth(2);

fsigbg->SetLineColor(2);

// signal part intergrating the peak in each histo

TF1 *fsig=new TF1("fsig",dampvoigt,mlow, mhigh,6);

fsig->SetParNames("A_{s}","m_{0}","#sigma","#Gamma","m_{q}","#tau");

fsig->SetParameters(10,thresh,sigma,Gamma,4286,0.1);

fsig->SetLineStyle(2);

fsig->SetLineWidth(2);

fsig->SetLineColor(2);

// background part in mass histo

TF1 *fbg=new TF1("fbg",argusBG,mlow,mhigh,4);

fbg->SetParNames("A_{b}","m_{t}","c","p");

fbg->SetParameters(100,4286,-30,0.5);

fbg->SetLineStyle(2);

fbg->SetLineWidth(2);
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fbg->SetLineColor(4);

// the exitation function

TF1 *fexi = new TF1("fexi",resonance2,low,up,3);

fexi->SetParNames("m_{R}","#Gamma_{R}","A");

//fexi->SetParLimits(0,2317-0.5,2317+0.5);

fexi->SetParameters(mdsj,Gamma,100.0);

// fexi->SetParameter(0,mdsj);

// fexi->SetParameter(1,Gamma);

// fexi->SetParameter(2,1.0);//*1.5/1000*sigXsec*lumiDay*nDays*effFact);

fexi->SetLineWidth(2);

fexi->SetLineColor(3);

fexi->SetNpx(100);

c3->cd(1);

//fexi->Draw();

c3->Update();

//func2->FixParameter(3,0);

// the coordinates and errors for the TGraphErrors object below

double *x=new double[nbins]; // the scan positions sqrt(s)_i

double *y=new double[nbins];

double *ex=new double[nbins];

double *ey=new double[nbins];

double *gx=new double[nbins]; // the scan positions sqrt(s)_i

double *gy=new double[nbins];

double *gex=new double[nbins];

double *gey=new double[nbins];

int i,j;

double step=(up-low)/(double)nbins;

//double sum=0;

// this loop is to calculate the scan positions

for (i=0;i<nbins;i++)

{

if (equalscanpoints) x[i]=step*i+0.5*step+low;

else {

if ((i<1) || (i>(nbins-2)) ) x[i]=step*i+0.5*step+low;

else x[i] = (i-(nbins+1.)/2.+0.5)*step/2.+thresh;

}

ex[i]=beamerr; // the error of beam (250 keV)

//y[i]=fexi->Eval(x[i]); // store the value of exitation function at x_i

// estimate signals; nominal lumi is at threshold

y[i] = fexi->Eval(x[i]+rand.Gaus(0,ex[i]))/fexi->Eval(thresh)*sigXsec*lumiDay*nDays*effFact;

//sum+=y[i]; // needed for normalization later

char tmp[200],tmp2[200],tmpbg[200];

sprintf(tmp,"mass%d",i);

sprintf(tmp2,"#sqrt{s}= %6.1f",x[i]);

sprintf(tmpbg,"hbg%d",i);

// create the histograms

mass[i]=new TH1F(tmp,tmp2,hbins,mlow,mhigh);

mass[i]->Sumw2();

mass[i]->SetMinimum(0);

mass[i]->SetTitleSize(0.1);

config_histo(mass[i],"m_{Ds0*}+m_{Ds} [MeV/c^{2}]","");//"entries / MeV/c^{2}");

mass[i]->SetLineWidth(1);

mass[i]->SetStats(0);

hbg[i]=new TH1F(tmpbg,tmpbg,hbins,mlow,mhigh);

hbg[i]->SetLineWidth(1);

hbg[i]->Sumw2();

//mass[i]->SetMaximum(500);
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}

// creat sum histogram

//mass[nbins]=new TH1F("msum","sum histogram",hbins,mlow,mhigh);

//mass[nbins]->Sumw2();

//config_histo(mass[nbins],"m_{Ds0*}+m_{Ds} [MeV/c^{2}]","");//"entries / MeV/c^{2}");

cout <<"Scan point postions + expected signals:"<<endl;

for (i=0;i<nbins;i++)

{

//y[i]=y[i]/sum*N; // here we calculate the number of expected signal events for every scan point

ey[i]=sqrt(y[i]); // the error of #signals

gy[i]=fexi->Eval(x[i])/fexi->Eval(thresh)*sigXsec*lumiDay*nDays*effFact;

gey[i]=ey[i];

gx[i]=x[i];

gex[i]=ex[i];

cout<<"E"<<i<<" = "<<x[i]<<" -> S_exp_"<<i<<" = "<<y[i]<< " +- "<<ey[i]<<endl;

}

c3->cd(1);

TGraphErrors *gengr=new TGraphErrors(nbins,gx,gy,gex,gey);

gengr->GetXaxis()->SetTitle("#sqrt{s} [MeV]");

gengr->GetXaxis()->SetTitleColor(1);

gengr->GetXaxis()->SetTitleOffset(1.4);

gengr->GetYaxis()->SetTitleFont(42);

gengr->GetXaxis()->SetNdivisions(505);

//gengr->SetLineColor(6);

//gengr->SetMarkerColor(6);

gengr->GetYaxis()->SetTitle("generated signals");

fexi->SetParameters(mdsj+0.2*rand.Rndm()-0.1,Gamma+0.2*rand.Rndm()-0.1,100.0);

gengr->Draw("AP");

c3->Update();

gengr->Fit("fexi");

/*gengr->Fit("fexi","m");

gengr->Fit("fexi","m");*/

c3->Update();

// in this loop we fill the histograms with signal and background events

//int B=y[nbins-1]*NS*BGwidthFactor; // the num of bgk events is NS*Signals for highest sqrt(s) (=highest signal peak)

//cout <<y[nbins-1]<<" "<<NS<<" "<<BGwidthFactor<<endl;

TLine l1(thresh,0,thresh,500);

l1.SetLineColor(2);

TLine l2(thresh,0,thresh,500);

l2.SetLineColor(4);

int gensum=0;

fbg->SetParameter(1,x[nbins-1]);

double regionwidth=x[nbins-1]-mlow;

double Bfactor=fbg->Integral(mlow,x[nbins-1])/fbg->Integral(sigwinlow,sigwinup);

for (i=0;i<nbins;i++)

{

fsig->SetParameter(4,x[i]);

//fbg->SetParameter(1,x[i]);

c2->cd(i+1);

// the number of signals to generate; poisson random value of expectation value

int nev=rand.PoissonD(y[i]);

gensum+=nev;

for (j=0;j<nev;j++)

mass[i]->Fill(fsig->GetRandom(mlow,mhigh));
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//double Bfactor=(fbg->Integral(mlow,x[i])/fbg->Integral(x[i]-sigwin,x[i]));

int B=y[nbins-1]*NS*Bfactor;

int nevb=rand.PoissonD(B); // the number of bkg evts to generate (’’)

cout <<"S="<<y[i]<<" --> "<< nev<<" B="<<B<<" --> "<<nevb<<endl;

for (j=0;j<nevb;j++)

{

//double bgent=fbg->GetRandom(mlow,x[i]);

double bgent=fbg->GetRandom(mlow,x[nbins-1]);

mass[i]->Fill(bgent-x[nbins-1]+x[i]);

hbg[i]->Fill(bgent-x[nbins-1]+x[i]);

}

mass[i]->Draw();

l1.DrawLine(thresh,0,thresh,mass[i]->GetMaximum()*0.25);

l2.DrawLine(sigwinup,0,sigwinup,mass[i]->GetMaximum()*0.5);

l2.DrawLine(sigwinlow,0,sigwinlow,mass[i]->GetMaximum()*0.5);

c2->Update();

c4->cd(i+1);

hbg[i]->Draw();

l2.DrawLine(x[i]+upshift,0,x[i]+upshift,hbg[i]->GetMaximum()*0.5);

l2.DrawLine(x[i]+upshift-sigwin,0,x[i]+upshift-sigwin,hbg[i]->GetMaximum()*0.5);

c4->Update();

}

/*

// sum all histos

for (i=0;i<nbins;i++) mass[nbins]->Add(mass[i]);

mass[nbins]->SetMinimum(0);

c2->cd(nbins+1);

mass[nbins]->Draw();

// fit the voigtian to the sum histo

//fv.SetParLimits(0,1,10000);

fv.SetParameter(0,mass[nbins]->GetBinContent(hbins/2)-mass[nbins]->GetBinContent(2));

fv.SetParameter(4,mass[nbins]->GetBinContent(2));

mass[nbins]->Fit("fv","","",2.307,2.327);

mass[nbins]->Fit("fv","m");

fv.ReleaseParameter(0);

// fix the parameters mean, Gamma, sigma for all fits

fv.FixParameter(1,fv.GetParameter(1));

fv.FixParameter(2,fv.GetParameter(2));

fv.FixParameter(3,fv.GetParameter(3));

*/

double nsum=0;

//gMinuit->SetMaxIterations(10);

fbg->SetParameters(100,x[0],-30,0.5);

fbg->FixParameter(3,0.5);

c2->cd(1);

mass[0]->Fit("fbg","");

mass[0]->Fit("fbg","m");

double thdev=0.1;

fsigbg->SetParLimits(1,thresh-thdev,thresh+thdev);

fsigbg->SetParLimits(2,0.1,2.);
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fsigbg->SetParLimits(3,0.1,3.);

fsigbg->SetParLimits(5,0.01,1.);

int maxtries=5;

// fit all the histos with voigtian

for (i=0;i<nbins;i++)

{

c4->cd(i+1);

fbg->SetParameters(100,x[0],-30,0.5);

fbg->SetParLimits(1,x[i]-thdev,x[i]+thdev);

hbg[i]->Fit("fbg","","",mlow,x[i]);

l1.DrawLine(sigwinlow,0,sigwinlow,hbg[i]->GetMaximum()*0.5);

l1.DrawLine(sigwinup,0,sigwinup,hbg[i]->GetMaximum()*0.5);

c4->Update();

c2->cd(i+1);

int tries=maxtries;

fsigbg->SetParLimits(4,x[i]-thdev,x[i]+thdev);

fsigbg->SetParLimits(7,x[i]-thdev,x[i]+thdev);

fsigbg->FixParameter(6,fbg->GetParameter(0));

fsigbg->FixParameter(7,fbg->GetParameter(1));

fsigbg->FixParameter(8,fbg->GetParameter(2));

fsigbg->FixParameter(9,0.5);

fsigbg->FixParameter(5,0.1);

fsigbg->SetParameters(10,thresh,1,1,x[i],0.1,fbg->GetParameter(0),fbg->GetParameter(1),fbg->GetParameter(2),0.5);

mass[i]->Fit("fsigbg","q");

while (--tries && fsigbg->GetParError(0)/fsigbg->GetParameter(0)>1.)

{

mass[i]->Fit("fsigbg","qm");

}

cout <<maxtries-tries<<endl;

mass[i]->GetListOfFunctions()->Add(new TF1(*fbg));

mass[i]->Draw();

l1.DrawLine(thresh,0,thresh,mass[i]->GetMaximum()*0.25);

l2.DrawLine(sigwinlow,0,sigwinlow,mass[i]->GetMaximum()*0.5);

l2.DrawLine(sigwinup,0,sigwinup,mass[i]->GetMaximum()*0.5);

fsig->SetParameters(fsigbg->GetParameters());

//fv.SetParameter(4,0);

double n=fsig->Integral(sigwinlow,sigwinup)/mass[i]->GetBinWidth(1); // find number of signals in peak by integral

int bkg=fbg->Integral(sigwinlow,sigwinup)/hbg[i]->GetBinWidth(1);

nsum+=n;

//ey[i]=fabs(fsigbg->GetParError(0)/fsigbg->GetParameter(0)*fabs(n));

ey[i]=sqrt(n+bkg);

//if (n<0) n=0;

y[i]=n;

// estimate error of integral; I chose the same relative error like the one of the amplitude parameter

// most likely this is not correct

cout <<i<<": S = "<<y[i]<<" +- "<<ey[i]<<" B = "<<bkg<<" ---> B/S = "<<bkg/n<<endl;

c2->Update();

}

cout <<"Nsum = "<<nsum<<" generated: "<<gensum<<endl;

c3->cd(2);

fexi->SetParLimits(0,mdsj-1.2,mdsj+1.2);

fexi->SetParLimits(1,0.005,4.6);

fexi->SetParameters(mdsj+0.2*rand.Rndm()-0.1,Gamma+0.2*rand.Rndm()-0.1,100.0);
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//fexi->SetParameters(mdsj,Gamma);

//fexi->SetParameter(2,1.5/1000*N);

//fexi->SetParameter(3,0);

double *yf=new double[nbins];

double *eyf=new double[nbins];

double *xf=new double[nbins];

double *exf=new double[nbins];

int fbins=0;

for (i=0;i<nbins;i++)

{

if (ey[i]/y[i]<3)

{

xf[fbins]=x[i];

yf[fbins]=y[i];

exf[fbins]=ex[i];

eyf[fbins]=ey[i];

fbins++;

}

}

// finally creat graph with measured values and fit the exitation function to it

//TGraphErrors *gr=new TGraphErrors(nbins,x,y,ex,ey);

TGraphErrors *gr=new TGraphErrors(fbins,xf,yf,exf,eyf);

gr->GetXaxis()->SetTitle("#sqrt{s} [MeV]");

gr->GetXaxis()->SetTitleColor(1);

gr->GetXaxis()->SetTitleOffset(1.4);

gr->GetXaxis()->SetNdivisions(505);

gr->GetYaxis()->SetTitleFont(42);

gr->GetYaxis()->SetTitle("reco’d signals");

gr->Draw("AP");

gr->Fit("fexi");

gr->Fit("fexi","m");

gr->Fit("fexi","m");

//gengr->Draw("same");

//gr->Draw("same");

c3->cd();

}


