Electromagnetic form factors in the time like region with $\bar{\mbox{P}}\mbox{ANDA}$

María Carmen Mora Espí

Institut für Kernphysik, Johannes Gutenberg Universität, Mainz GSI, Darmstadt

> Institutsseminar 12. Januar 2009

> > Electromagnetic form factors in the time like region with PANDA

Introduction

- Electromagnetic Form Factors in the time like region
- Measurement of the electromagnetic Form Factors
- Available data

PANDA detector

Simulations and analysis

- Description of the analysis
- Electron analysis
- Muon analysis

Conclusions and Outlook

Fanda Electromagnetic Form Factors

Parameterize the hadronic current in the matrix element for elastic electron scattering and its crossed process annihilation.

Matrix element for e-p scattering:

$$M = \frac{e^2}{q^2} \bar{u}(k_2) \gamma^{\mu} u(k_1) \bar{u}(p_2) \left[F_1(q^2) \gamma_{\mu} + i \frac{\sigma_{\mu\nu} q^{\nu}}{2M} F_2(q^2) \right] u(p_1)$$

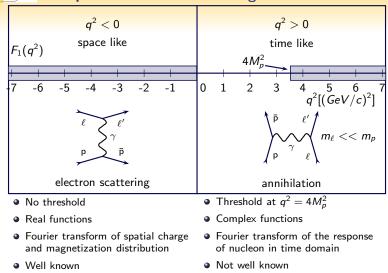
$$F_1: \text{ Dirac FF} \\ F_2: \text{ Pauli FF}$$

One can define the Sachs Form Factors as:

$$G_e = F_1 + au F_2$$

 $G_m = F_1 + F_2$ where $au = rac{q^2}{4M^2c^4}$

- Depend on transferred momentum, q^2 .
- We are interested in measuring the Electromagnetic Form Factors in time-like region.



Introduction

PANDA detector

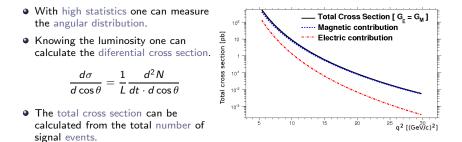
Simulation

Fanda Space-like and Time-like regions

Space-like and Time-like regions are conected by DISPERSION RELATIONS.

Electromagnetic form factors in the time like region with PANDA

Simulation

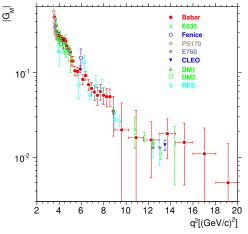

5 / 36

panda Access to time-like form factors

We can access via the reactions $\bar{p}p \rightarrow \ell^+ \ell^-$

Cross Section $\bar{p}p \rightarrow \ell^+ \ell^-$

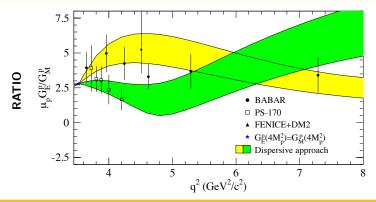
$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2(\hbar c)^2}{8M_p\sqrt{\tau(\tau-1)}} \left[|G_m|^2 \left(1 + \cos^2\theta\right) + \frac{|G_e|^2}{\tau} \left(1 - \cos^2\theta\right) \right]$$



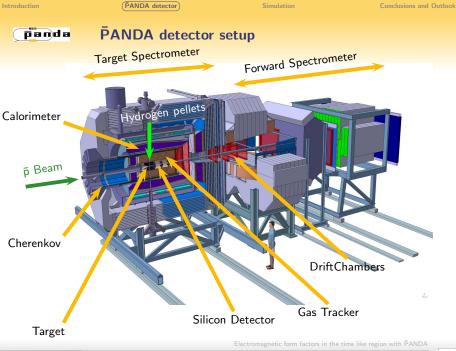
Simulation

World data on time-like electromagnetic Form Factors

Available data so far had low statistics except BABAR and PS170 experiments.


- Assumption of equality between G_e and G_m (Valid strictly only at threshold).

- BABAR:3284 events
- E835: 206 events
- Fenice: 25 and 69 events
- PS170: 3667 events
- E760: 29 events
- CLEO: 14 events
- DM1: 63 events
- DM2: 172 events
- BES: 90 events

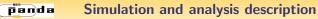


panda

Fit to Form Factors data using dispersion relations

- A fit to the data (using also results in space-like region) show the possibility of G_e/G_m being 0, 1 or even 3
- Discrepancies between BABAR and PS-170 experiments.

PANDA challenges and capabilities


- 1.- Nucleon structure studies: Measurement of FF in time-like region.
- 2.- Physics case:
 - Study of reaction by the signal channels $\bar{p}p \rightarrow e^+e^-$ and $\bar{p}p \rightarrow \mu^+\mu^-.$
 - Background channels:

•
$$\bar{p}p \rightarrow \pi^+\pi^- \rightarrow 10^6$$
 times higher than signal in average.
• $\bar{p}p \rightarrow \pi^0\pi^0$
• $\bar{p}p \rightarrow \pi^0\gamma$
• $\bar{p}p \rightarrow \gamma\gamma$

- Challenge: Good suppression of pions as background.
- 3.- Panda Detector:
 - High Luminosity: $L = 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - Good tracking system.
 - Good PID capabilities.

$$\rightarrow$$
 SIMULATION

- 1.- EvtGen.
- **2.** GEANT4.
- 3.- Digitization.
- 4.- Cluster and track finding.
- 5.- Reconstruction.
 - Candidates selection: Reconstrucction of events.
 - Particle Identification: Using d flare 1 Tee of evels on different detectors \rightarrow PID lists for different particle hypothesis (e, μ , p, π and K):
 - Charged
 - Very loose
 - Loose
 - Tight
 - Very Tight

(Increasing likelihood level from top to bottom)

- 6.- Kinematical fits to reconstructed tracks.
- 7.- Final event selection Ntrop parts and add properties.
- 8.- Results: Fit to reconstructed angular distribution.

10 / 36

Simulation and analysis description

- 1.- EvtGen.
- **2.** GEANT4.
- 3.- Digitization.
- 4.- Cluster and track finding.
- 5.- Reconstruction.
 - Candidates selection: Reconstrucction of events.
 - Particle Identification: Using different likelihood levels on different detectors \rightarrow PID lists for different particle hypothesis (*e*, μ , *p*, π and *K*):
 - Charged
 - Very loose
 - Loose
 - Tight
 - Very Tight

(Increasing likelihood level from top to bottom)

- 6.- Kinematical fits to reconstructed tracks.
- 7.- Final event selection Ntrop parts and add properties.
- 8.- Results: Fit to reconstructed angular distribution.

10 / 36

Simulation and analysis description

- 1.- EvtGen.
- **2.** GEANT4.
- 3.- Digitization.
- 4.- Cluster and track finding.
- 5.- Reconstruction.
 - Candidates selection: Reconstrucction of events.
 - Particle Identification: Using different likelihood levels on different detectors \rightarrow PID lists for different particle hypothesis (*e*, μ , *p*, π and *K*):
 - Charged
 - Very loose
 - Loose
 - Tight
 - Very Tight

(Increasing likelihood level from top to bottom)

- 6.- Kinematical fits to reconstructed tracks.
- 7.- Final event selection: Cuts on particle candidate properties.
- 8.- Results: Fit to reconstructed angular distribution.

Conclusions and Outlook

ELECTRON ANALYSIS

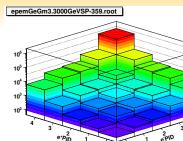
Simulated events for analysis using electrons

Signal:

p(GeV/c)	1.7	2.9	3.0	3.7	4.9	5.9	6.4	7.9	10.9
$\frac{q^2 [({\rm GeV/c})^2]}{e^+ e^-}$				8.2		12.9		16.7	
$G_e = 0$	10 ⁶								
$G_e = G_m$	10^{6}	10^{6}	10^{6}	10^{6}	10^{6}	10 ⁶	10^{6}	10^{6}	10^{6}
$G_e = 3 \cdot G_m$	10 ⁶								

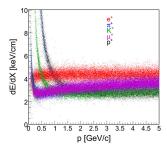
Background:

p(GeV/c)	3.7	5.9	7.9
$q^{2}[(GeV/c)^{2}]$	8.2	12.9	16.7
$\pi^+\pi^-$	10 ⁸	10 ⁸	$2\cdot 10^8$
$\pi^0\pi^0 ightarrow$			
$\gamma\gamma + \gamma\gamma$	10 ⁶	10 ⁶	10 ⁶
$\gamma\gamma+\gamma e^+e^-$	10 ⁶	10 ⁶	10 ⁶
$\gamma e^+ e^- + \gamma e^+ e^-$	10 ⁶	10 ⁶	10 ⁶


1 event - 2 s cpu time $\rightarrow \approx$ 6 cpu years in only 1 machine for 1 channel background simulation.

6 and a

PANDA detector


Particle identification

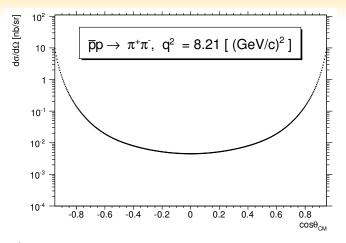
electron PID cuts:

- (0) Charged particles
- (1) Very Loose (VL) > 20%
- (2) Loose (L) > 85%
- (3) Tight (T) > 99%
- (4) Very Tight (VT) > 99.8% + 10%/detector

Simulation

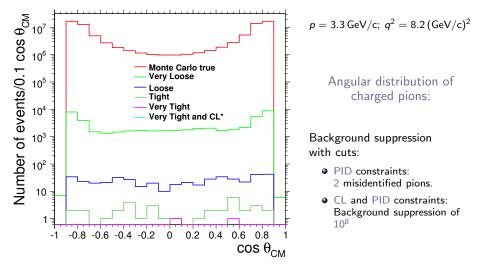
- E and p have been measured for each track.
- 4-constraints fit (E, p, m, r_0) performed with some particle hypothesis
- (e, μ , p, π and K).
- Calculated the fit confidence level for each hypothesis.

Kinematical fit:

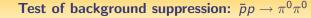

- $CL(e^+e^-) > 10 \cdot CL(\pi^+\pi^-)$
- CL($e^+e^-)>10^{-3} \rightarrow$ Necessary to suppress the whole π^0 background.

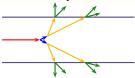
Electromagnetic form factors in the time like region with PANDA

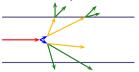
$$\bar{p}p \rightarrow \pi^+\pi^-$$
 cross section

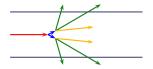

- $\bar{p}p \rightarrow \pi^+\pi^-$ cross section is not well known.

- A model fitting the existing experimental data has been done as imput for the simulation.


Test of background suppression: $\bar{p}p \rightarrow \pi^+\pi^-$


Electromagnetic form factors in the time like region with PANDA

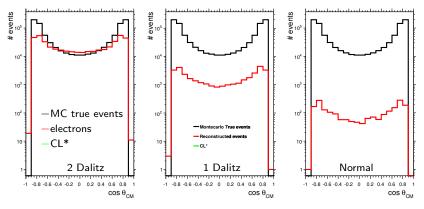



Normal decay:

1 Dalitz decay:

2 Dalitz decays

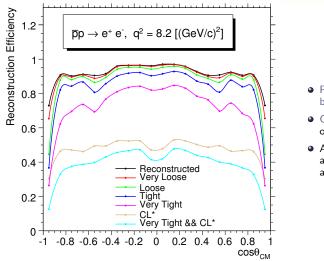
- Normal decay: Does not produce electrons near the vertex.
- 1 Dalitz decay: Produces 2 electrons near the vertex.
- 2 Dalitz decays: Produce 4 electrons near the vertex.
- Electrons from conversion of photons in the beam pipe are easily discriminated by kinematical constraints.
- Electrons from Dalitz decay can be confused with signal electrons.


Electromagnetic form factors in the time like region with PANDA

Test of background suppression: $\bar{p}p \rightarrow \pi^0 \pi^0$

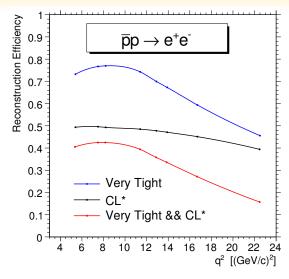
Angular distribution of neutral pions: p = 5.9 GeV/c; $q^2 = 12.9 (\text{GeV/c})^2$

- CL constraints suppress all background.
- PID constraints are not usefull.


Branching ratios: $\Gamma_{2\gamma}/\Gamma_{tot} = 98.798\%$ $\Gamma_{e^+e^-\gamma}/\Gamma_{tot} = 1.198\%$

Electromagnetic form factors in the time like region with PANDA

Signal: Reconstruction efficiency $G_e = G_m$; p = 3.3 GeV/c; $q^2 = 8.2 (\text{GeV/c})^2$



- PID cuts don't represent a big suppression in efficiency.
- CL cut represents about 50% of signal reduction.
- After combination of PID and CL cuts the efficiency is about 40%.

Signal: Reconstruction efficiency $G_e = G_m$ vs q^2

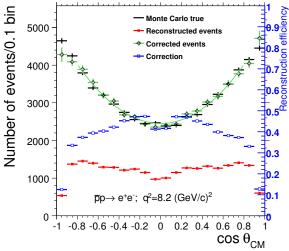
- At higher energies, the efficiency is smaller than at lower energies.
- In comparison with the expected statistics the angular distribution reconstruction is more difficult at higher energies.
- Results for G_e = 0 and G_e = 3Gm are simmilar.

20 / 36

Simulation

Realistic statistics

Signal e^+e^- :

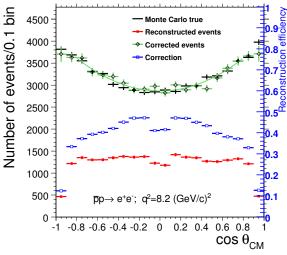

At full luminosity ($\pounds = 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$) and 10^7 s of measurement time, corresponding approximately to 116 days, the expected number of events is the following:

$s(GeV/c)^2$	Nr. events
5.40	$1.07\cdot 10^{6}$
7.43	$1.24\cdot 10^5$
7.64	$1.03\cdot 10^5$
8.20	$6.47\cdot 10^4$
11.03	9078
12.90	3204
13.86	1985
16.69	572
22.29	81

Signal: Angular distribution

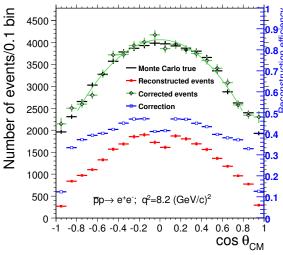
$$G_e = 0;$$

 $p = 3.3 \, \text{GeV/c};$
 $q^2 = 8.2 \, (\text{GeV/c})^2$


- Realistic statistics: 64 000 events.
- Good angular distribution reconstruction after acceptance correction.
- The acceptance correction have been calculated using 1 000 000 events and isotropical distribution simulation.

22 / 36

Signal: Angular distribution


$$G_e = G_m;$$

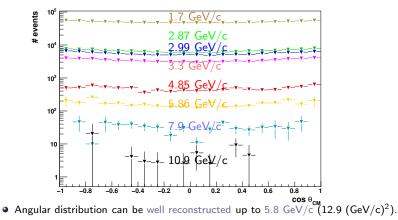
 $p = 3.3 \,\text{GeV/c};$
 $q^2 = 8.2 \,(\text{GeV/c})^2$

- Realistic statistics: 64 000 events.
- Good angular distribution reconstruction after acceptance correction.
- The acceptance correction have been calculated using 1 000 000 events and isotropical distribution simulation.

Signal: Angular distribution

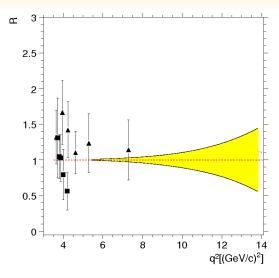
$$G_e = 3G_m;$$

 $p = 3.3 \,\text{GeV/c};$
 $q^2 = 8.2 \,(\text{GeV/c})^2$


- Realistic statistics: 64 000 events.
- Good angular distribution reconstruction after acceptance correction.
- The acceptance correction have been calculated using 1 000 000 events and isotropical distribution simulation.

24 / 36

Reconstructed and corrected angular distributions for $\bar{p}p \rightarrow e^+e^-$ and $G_e = G_m$ at different energies



• At higher energies is still possible to use the integrated cross section for G_e/G_m calculation.

Simulation

Results for G_e/G_m

- Squares and triangles represent the values calculated in BABAR and PS170 experiments.
- Our results (for the case of $G_e = G_m$) will be distributed around the red horizontal dashed line.
- The error bars of our calculations (only statistical) are represented by the yellow band.
- The errors are a factor 10 smaller than those calculated up to now.

26 / 36

Conclusions and Outlook

MUON ANALYSIS

Electromagnetic form factors in the time like region with PANDA

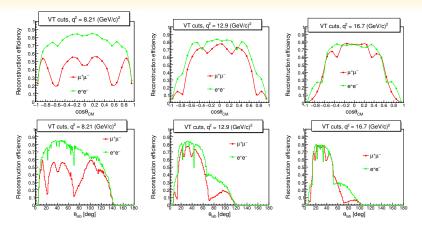
Simulated events for analysis using muons

Signal:

p(GeV/c)	1.7	3.3	5.9	7.9
$q^2 \left[(\text{GeV}/\text{c})^2 \right]$	5.4	8.2	12.9	16.7
$\mu^+\mu^-$				
$G_e = 0$	10^{6}	10 ⁶	10 ⁶	
$G_e = G_m$	10^{6}	10^{6}	10 ⁶	
$G_e = 3 \cdot G_m$	10^{6}	106	10 ⁶	

Background:

p(GeV/c)	1.7	3.3	5.9	7.9
$q^2 \left[({ m GeV/c})^2 ight]$	5.4	8.2	12.9	16.7
$\pi^+\pi^-$		10 ⁸	10 ⁸	$2\cdot 10^8$


electromagnetic form factors in the time like region with PANDA

____28 / 36 ___

Comparison of electron and muon detection efficiencies

Plots by Gosia Sudol

Muon efficiency is lower than electron efficiency, due to partial implementation of the muon detector in the simulation.

Test of muon identification with different cuts

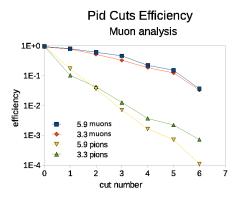
muon PID:

- Very Loose (VL) > 20%
- Loose (L) > 45%
- $\bigcirc Tight (T) > 70\%$
- Very Tight (VT) > 85%
- Solution Likelihood (LH) > 90%

 $\bigcirc \ \mathsf{LH} > 95\%$

Kinematical fit:

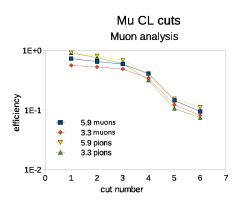
- $CL(\mu^+\mu^-) > 10 \times CL(\pi^+\pi^-)$ • $CL(\mu^+\mu^-) > 50 \times CL(\pi^+\pi^-)$ • $CL(\mu^+\mu^-) > 100 \times CL(\pi^+\pi^-)$ • $CL(\mu^+\mu^-) > 150 \times CL(\pi^+\pi^-)$ • $CL(\mu^+\mu^-) > 200 \times CL(\pi^+\pi^-)$
- $CL(\mu^+\mu^-) > 300 \times CL(\pi^+\pi^-)$


- $CL(\mu^+\mu^-) > 10^{-9}$
- $CL(\mu^+\mu^-) > 10^{-3}$
- \bigcirc CL($\mu^+\mu^-$) > 10⁻²
- $CL(\mu^+\mu^-) > 0.1$
- CL($\mu^+\mu^-$) > 0.4
- CL $(\mu^+\mu^-) > 0.5$

PANDA detector

Background suppression: Only PID cuts

 $\begin{array}{l} 3.3 \,\, {\rm GeV/c} \, - \, 8.2 \, \left({\rm GeV/c} \right)^2 \\ 5.9 \,\, {\rm GeV/c} \, - \, 12.9 \, \left({\rm GeV/c} \right)^2 \end{array}$


VL
L
T
VT
LH > 90%
LH > 95%
The signal to noise ratio increases with LH level.
The final cut has been selected to:

 $\rm LH\,>\,95\%$

Background suppression: Only kinematical fit cuts

3.3 GeV/c - 8.2 $(GeV/c)^2$ 5.9 GeV/c - 12.9 $(GeV/c)^2$

•
$$CL(\mu^+\mu^-) > 10^{-9}$$

• $CL(\mu^+\mu^-) > 10^{-3}$
• $CL(\mu^+\mu^-) > 10^{-2}$
• $CL(\mu^+\mu^-) > 0.1$
• $CL(\mu^+\mu^-) > 0.4$
• $CL(\mu^+\mu^-) > 0.5$

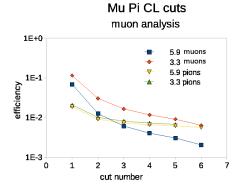
- The μ CL cut affects in the same way signal and background ${\rm CL}(\mu^+\mu^-)>10^{-3}$

Electromagnetic form factors in the time like region with PANDA

Background suppression: Only kinematical fit cuts

$$3.3 \text{ GeV/c} - 8.2 (\text{GeV/c})^2$$

 $5.9 \text{ GeV/c} - 12.9 (\text{GeV/c})^2$


•
$$CL(\mu^+\mu^-) > 10 \times CL(\pi^+\pi^-)$$

• $CL(\mu^+\mu^-) > 50 \times CL(\pi^+\pi^-)$
• $CL(\mu^+\mu^-) > 100 \times CL(\pi^+\pi^-)$
• $CL(\mu^+\mu^-) > 150 \times CL(\pi^+\pi^-)$
• $CL(\mu^+\mu^-) > 200 \times CL(\pi^+\pi^-)$
• $CL(\mu^+\mu^-) > 300 \times CL(\pi^+\pi^-)$
More restrictive cuts reduce the

е signal to noise ratio

- $CL(\mu^+\mu^-) > 10 \times CL(\pi^+\pi^-)$ and

-
$$\mathsf{CL}(\mu^+\mu^-) > 50{ imes}\mathsf{CL}(\pi^+\pi^-)$$

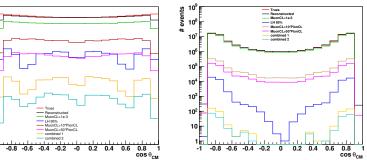
PANDA detector

Cuts effect on muons and pions angular distributions at 3.3 GeV/c - 8.2 (GeV/c)²

π⁺ π⁻ as μ⁺ μ⁻

Signal: 1 000 000 events Expected: 64 000 events Background: 93 415 000 events Expected: $\approx 64 \cdot 10^9$ events

10


104

10³

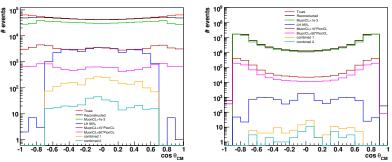
10²

10

events

Combined 1: LH > 95%, CL(μ)> 10⁻³ and CL(μ)> 10 CL(π) Combined 2: LH > 95%, CL(μ)> 10⁻³ and CL(μ)> 50 CL(π)

PANDA detector



Cuts effect on muons and pions angular distributions at 5.9 GeV/c - 12.9 (GeV/c)²

π⁺ π⁻ as u⁺ u⁻

Signal: 1 000 000 events Expected: 3 000 events Background: 112 165 000 events Expected: $\approx 3.10^9$ events

μ* μ**` as** μ* μ⁻

Combined 1: LH > 95%, CL(μ)> 10⁻³ and CL(μ)> 10 CL(π) Combined 2: LH > 95%, CL(μ)> 10⁻³ and CL(μ)> 50 CL(π)

ELECTRON ANALYSIS:

- Measurement of G_e/G_m is possible up to about 14 $(GeV/c)^2$ by measurement of angular distribution.
- At higher energies is still possible to use the integrated cross section for Form Factors measurement.
- The error bars are reduced by a factor 10 in comparison with previous experiments.
- $\pi^+\pi^-$ background can be suppressed by a factor 10^8 .
- $\pi^0 \pi^0$ background can be discriminated by kinematical constraints.

MUON ANALYSIS:

- High background suppression implies drastic signal reduction in case of muons.
- Complete implementation of muon detectors in new software is needed.

 $\bar{\mathsf{P}}\mathsf{ANDA}$ detector at FAIR next to GSI seems to be of high utility for our measurements.

