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(panda Electromagnetic Form Factors

Parameterize the hadronic current in the matrix element for elastic electron
scattering and its crossed process annihilation.

Matrix element for e-p scattering:

& _ Ourq” .
M = &)y ulh)a(e2) | (e -+ i Tnd Fa(a?)| ) 78 (s
One can define the Sachs Form Factors as:
Ge=F+7F
2
where 7 = —%—
Gm=F+F nzet

@ Depend on transferred momentum, g°.

@ We are interested in measuring the Electromagnetic Form Factors in time-like
region.
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( panda Space-like and Time-like regions
q* <0 q*>0
lik i i
F(e) space like i time like
4JVIP\)l ! !

7

5 6
l(Gev /<)

my << mp

electron scattering annihilation
@ No threshold @ Threshold at g% = 4I\/I§
@ Real functions @ Complex functions
@ Fourier transform of spatial charge @ Fourier transform of the response
and magnetization distribution of nucleon in time domain
@ Well known @ Not well known

Space-like and Time-like regions are conected by DISPERSION RELATIONS.
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( panda Access to time-like form factors

We can access via the reactions pp — £7¢~

do ma’(he)’ [le|2 <1 + cos® 0) 4 |G:|2 <1 = cos20)}

dcosf 8Mpy/T (T —1)

@ With high statistics one can measure

L . — Total Cross Section [ G_= G,
the angular distribution. 10 LG, =Gyl

------ Magnetic contribution

@ Knowing the luminosity one can -~ Electric contribution

calculate the diferential cross section.

10" 4

do _1 d?N
dcos® ~ Ldt-dcosf

1023

Total cross section [pb]

. 10° o
@ The total cross section can be e

calculated from the total number of ° s * ® # 42 [(GeVe)2]
signal events.

Electromagnetic form factors in the time like region with PANDA

e
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World data on time-like electromagnetic Form

panda
Factors

Available data so far had low statistics except BABAR and PS170 experiments.

- Assumption of equality

& . T a1 between G.and G, (Valid
1 7 = | strictly only at threshold).
! =1 ; (E:I7_6E°o @ BABAR:3284 events
1ot s s owr L o E835: 206 events
] @ Fenice: 25 and 69 events
] @ PS170: 3667 events
1 [ @ E760: 29 events
1 %HIH w | @ CLEO: 14 events
102 - 3 @ DM1: 63 events
[ @ DM2: 172 events
4 r @ BES: 90 events
\ \ \ \ \

2 4 6 8 10 12 14 16 18 20
l(GeVic)]
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( Fanda Fit to Form Factors data using dispersion relations

75—
S5E
o %E L
E =257
é 2& C e BABAR 3
[ o PS-170 ]
0 4 FENICE+DM2 N
r * GRAM)=GE(4M)) ]
F [ Dispersive approach 4
-2'5 7 L ‘ L L ‘ L L ‘ L L L L ‘ L L L L 1
4 5 6 7 8
q* (GeV/c?)

@ A fit to the data (using also results in space-like region) show the possibility of
Ge/Gm being 0, 1 or even 3

@ Discrepancies between BABAR and PS-170 experiments.

Electromagnetic form factors in the time like region with PANDA

( e
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( panda PANDA detector setup

ter

Target Spectrome ctrometer

Forward Spe

Calorimeter

P Beam

Cherenkov

T, y

DriftChambers

Gas Tracker

Silicon Detector

Target
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(Aanda  PANDA challenges and capabilities

1.- Nucleon structure studies: Measurement of FF in time-like region.
2.- Physics case:

@ Study of reaction by the signal channels pp — eTe™ and pp — '~
@ Background channels:

pp — mrm~ — 10° times higher than signal in average.

Bp — 7r°7r°

pp — m'y
Bp — 7Yy

@ Challenge: Good suppression of pions as background.
3.- Panda Detector:

@ High Luminosity: L =2 103 cm 25!

@ Good tracking system.

@ Good PID capabilities.

¢ ¢ ¢ ¢

— SIMULATION
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panda Simulation and analysis description

1.- EvtGen.
2.- GEANT4.
3.- Digitization.
4.- Cluster and track finding.
5.- Reconstruction.
@ Candidates selection: Reconstrucction of events.

@ Particle Identificati$‘ M@h’ r Ike @ vels on different detectors —
PID lists for differen ;!artlc e yipko hes-iE e, ,(l/}tr and K):

Charged
@ Very loose
@ Loose
o Tight
@ Very Tight
(Increasing likelihood level from top to bottom)

<

6.- Kinematical fits to reconstructed tracks.

7.- Final event seIectioA Nt%LW I'dSndidate properties.
ed angular dis

8.- Results: Fit to reconstruct tribution.

36
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(panda Simulation and analysis description

1.- EvtGen.

2.- GEANT4.

3.- Digitization.

4.- Cluster and track finding.
5.- Reconstruction.

@ Candidates selection: Reconstrucction of events.
@ Particle Identification: Using different likelihood levels on different detectors —
PID lists for different particle hypothesis (e, u, p, ™ and K):
Charged
@ Very loose
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<

6.- Kinematical fits to reconstructed tracks.
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(panda Simulation and analysis description

1.- EvtGen.
2.- GEANTA4.
3.- Digitization.
4.- Cluster and track finding.
5.- Reconstruction.
@ Candidates selection: Reconstrucction of events.

@ Particle Identification: Using different likelihood levels on different detectors —
PID lists for different particle hypothesis (e, u, p, ™ and K):
Charged
@ Very loose
@ Loose
o Tight
@ Very Tight
(Increasing likelihood level from top to bottom)

<

6.- Kinematical fits to reconstructed tracks.
7.- Final event selection: Cuts on particle candidate properties.
8.- Results: Fit to reconstructed angular distribution.



ELECTRON ANALYSIS

Electromasnetic form factors in the time like region with PANDA
QI
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( panda Simulated events for analysis using electrons
Signal:
p(GeV/c) 1.7 29 30 37 49 59 64 79 109
g% [(GeV/c)?] 8.2 12.9 16.7
ete
Ge=0 109 10° 106 10° 10® 106 106 106  10°
Ge = Gy 106 109 10® 106 10® 10° 10® 10° 10
Ge=3-Gn 10% 10 105 10% 106 106 106 106  10°
Background:
p(GeV/c) 3.7 59 7.9
q% [(GeV/c)?] 82 129 167
ntm 108 108 2-108
7\'071'0 —
¥y + 7Y 100 108 108
vy 4+ yete~ 106 106 109

~vete™ +~yete— 10 109 109

1 event - 2 s cpu time — =~ 6 cpu years in only 1 machine for 1 channel background
simulation.
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( panda Particle identification

[_epemGeGm3.3000GeVSP-359.root |

electron PID cuts:

@ (0) Charged particles
@ (1) Very Loose (VL) > 20%
@ (2) Loose (L) > 85%
@ (3) Tight (T) > 99%

@ (4) Very Tight (VT) >
99.8% + 10%//detector

- N P
T T

E/p [(GeV)/(GeVic)]

dE/dX [keV/cm]

Lol 1
Cb 05 1 15 2 25 3 35 4 45 5

°
kY
T T T

p [GeV/c]
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(@anmda  Kinematical fit

- E and p have been measured for each track.

- 4-constraints fit (E, p, m, ry) performed with some particle hypothesis
(e, p, p, ™ and K).
- Calculated the fit confidence level for each hypothesis.

Kinematical fit:

o Cl(ete™) > 10- CL(mtn ™)

@ CL(ete™) > 1073 — Necessary to suppress the whole 70 background.

14 / 36
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( panda pp — mTm— cross section
7 100 F
g 104 Pp— ', g =8.21[(GeV/c)?] L
B ¥

10"

102

10°

10 T T T T T T T T T
-08 -06 -04 -02 0 0.2 0.4 0.6 0.8

€0SBy,

- pp — 7wt~ cross section is not well known.

- A model fitting the existing experimental data has been done as imput for the
simulation.
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and =

pa

Number of events/0.1 cos 6,

107

10°

—_
o
”

10
10°

10?

_
o

—_

N

— Monte Carlo true
—— Very Loose
— Loose
Tight
— Very Tight

Very Tight and CL*

L

T T T T \,ﬁ T T 'j T
-1 -08 -06 -04 -02 0 02 04 06 08
cos Oy,

= \\H!m‘ LR AALL S AL S A B AL I RAALL R AR p

Test of background suppression: pp — 7 7~

Conclusions and Outlook

p=3.3GeV/c; g> = 8.2(GeV/c)?

Angular distribution of
charged pions:

Background suppression
with cuts:

@ PID constraints:
2 misidentified pions.

@ CL and PID constraints:
Background suppression of
108

36
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Introduction
( panda Test of background suppression: pp — 7070

Normal decay:

V 2

—<Z

VY

V
1 Dalitz decay:
Z

J.
AL

2 Dalitz decays

J.
A

— protons
— pions

photons

— electrons

Normal decay: Does not produce electrons
near the vertex.

1 Dalitz decay: Produces 2 electrons near the
vertex.

2 Dalitz decays: Produce 4 electrons near the
vertex.

Electrons from conversion of photons in the
beam pipe are easily discriminated by
kinematical constraints.

Electrons from Dalitz decay can be confused
with signal electrons.
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( panda Test of background suppression: pp — 7070

Angular distribution of neutral pions: p =5.9GeV/c; ¢? = 12.9(GeV/c)?

2 2 2
< c =
L o Lioe
[ [ o
** ** **
104 3 104 3 104 3

3 10° _'-LLL'_‘—!_.—-—"_'JJ_L 3 10° 4 3
w{| —MC true events [| 10 F w ]

—electrons = Montecarlo True events
|| == Reconstructed events
10 . C L* 104 oL 3 10
15 2 Dalitz L e 1 Dalitz H 1 Normal L
L L A LA LA AR RARI AR L LA A R AAAS AARS RARS MR LAARS LA MRS MM AAAE AAAS LALE ALY
41 08-06-04-02 0 0204 06 08 1 -1 08060402 0 0204 06 08 1 108060402 0 0204 0608 1
cos SCM cos eCM cos eCM

Branching ratios:

. rz,y/rtot = 08. 798%
@ PID constraints are not usefull. Moo ﬂ{/rm — 1.198%

@ CL constraints suppress all background.



Introduction

( panda

Reconstruction Efficiency

o
o
!

PANDA detector Conclusions and Outlook

Signal: Reconstruction efficiency
Ge = Gm; p=3.3GeV/c; ¢°> = 8.2 (GeV/c)?

-
- (V)
Cl 1

o
©
!

o
~
Ll

0.2-

Pp > ete, 2 =8.2[(GeV/c)

—— Reconstructed
—— Very Loose

—— Loose
—— Tight
—— Very Tight

CL*
Very T|ght && CL*

@ PID cuts don't represent a
big suppression in efficiency.

@ CL cut represents about 50%
of signal reduction.

@ After combination of PID
L and CL cuts the efficiency is
about 40%.

0
A

08 06 04 02 0 02 04 06 08
cosb,,

1
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@ In comparison with the

0.57 3 expected statistics the
0 4,: a angular distribution

reconstruction is more

(panda Signal: Reconstruction efficiency G. = G, vs g°
> 11

[s] ]

S _ .

o 0.9 pp — e'e 3

i E E

s 0.87 i

5 0_75 a3 @ At higher energies, the
2 ] b efficiency is smaller than at
g 0.6 - lower energies.

S ] s

9]

o

0'3é , difficult at higher energies.
] —— Very Tight : @ Results for G = 0 and
0.27 — CL* 2 Ge = 3Gm are simmilar.
0.1 —— Very Tight && CL* -
0 3 TTTTTTTTTTT

4 6 8 10 12 14 16 18 20 22 24
Q2 [(GeV/ic)?

20
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( panda Realistic statistics
Signal ete™ :

Conclusions and Outlook

At full luminosity (£ = 2-10*> cm~2s71) and 10 s of measurement time,
corresponding approximately to 116 days, the expected number of events is the

following:

s(GeV/c)?

Nr. events

5.40
7.43
7.64
8.20
11.03
12.90
13.86
16.69
22.29

1.07 - 10°

1.24-10°

1.03-10°

6.47 - 10*
9078
3204
1985
572
81
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( panda Signal: Angular distribution
c | 1 1 1 1 51 >
e — Monte Carlo true N G —
— 5000 7] -=— Reconstructed events _:ﬁgg e
C). :+ <~ Corrected events 'i:b 85 p eV/ ¢
_‘\@ it -=- Correction - 1 _§ q = 8 2 (GeV/c)
40007 Ty + 3073
q>) 1 X > —Ei).Gg @ Realistic statistics: 64 000
\-IC—) 3000 | - e _?__% E; E events.
— — iﬁ-ﬂ-J_ -D-*-i _5—0'5 @ Good angular distribution
8 ] o = . 0.4 reconstruction after
£ 20007 . e acceptance correction.
2 1 e — ;?-3 @ The acceptance correction
f e T o2 have been calculated using
1000 7] - T 1 000 000 events and
el Pp— e*e’; o?=8.2 (GeV/c)? =01 isotropical distribution
] ’ ’ 1 simulation.
—10

[ e B B B B B
-1 -08-06-04-02 0 02 04 06 08 1
Cos 6,
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Introduction PANDA detector
( panda Signal: Angular distribution
C } | | | | J1 >
‘O 4500 — Monte Carlo true §
~— ] —= Reconstructed events 92
o 40009 +- Corrected events 86
g 3500 é T _g__ij'_ -~ Correction j_\ J -7_%
q>) 1 Bl <+ -+ ’ %

, & B
> 30007 R g o g .6§
S 2500 5T
— ; oo - -
8 2000 e oo T 4
S 1 - .
=S 15001 . e e . 3
z ] T
1000 .2
500 3=~ Pp— e*e’; P=8.2 (GeV/c)? -1
. T 0

[ M—
4 08-06-04-02 0 02 04 06 08 1

cos 6,

eV/c;
? = 8.2(GeV/c)?

@ Realistic statistics: 64 000
events.

@ Good angular distribution
reconstruction after
acceptance correction.

@ The acceptance correction
have been calculated using
1 000 000 events and
isotropical distribution
simulation.
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( panda Signal: Angular distribution
E b ::1 5
‘D 4500 H508
— ] & :9'9-2
5 4000 e = = 3 .0
Q 3 4 —,;;:“__Y_ T -@__"Fﬁg— —0.8 g
3] E =< - T 2
c 3500 ] » — Monte Carlo true =S - 7%
o ] - —=- Reconstructed events .. E =
> E + Ay
[} 3000 ] b %- Corrected events =+ __D.G§
= B -= Correcti * I @8
S 2500 E . + N orrection _ _$_;_p_5cc

S w00 e e T s

E is00] = s T T s

=z 1 — - I
10007 _ - - 0.2
500 *;_-_ Pp— e‘e’; ?=8.2 (GeV/C)2 _2?1
O . T T T T T T T T T -b
-1 -08-06-04-02 0 02 04 06 08 1

cos 6,

Conclusions and Outlook

ww
w

()
03
<
~
kgl

oo

q°> = 8.2(GeV/c)?

@ Realistic statistics: 64 000
events.

@ Good angular distribution
reconstruction after
acceptance correction.

@ The acceptance correction
have been calculated using
1 000 000 events and
isotropical distribution
simulation.
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PANDA detector

T T TTIT]

# events

10° =
Ey—v—

T

T

TT HWW

10

TT HWW

1

TW

FY—v—v—v— v v _y_

Vv vy

- 7.9-GeVy/T oy 1= -4

—V— i— 1049 %;GV/C

L 7v Gve—\—/v/—gvf—vf—v——v—fvf—vffvf—v—

V¥V Vv — vy vy ¥y

2.87 GeV/c

—y—V—V

s S ,27,979,}{1; e

I S C /o

R 4 &iGeWF vy

I
v i | ‘
| ) |

4o T

0 8 -0.6 -0.4

‘\\“\\\“\\‘\\\‘\\\
-0.2 0 0.6 0.8

cos 6,

Conclusions and Outlook

Reconstructed and corrected angular distributions
for pp — ete™ and G, = G,, at different energies

@ Angular distribution can be well reconstructed up to 5.8 GeV/c ?12 9 (GeV/c)?).

@ At higher energies is still possible to use the integrated cross section for Ge/Gm

calculation.

25
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( panda

R

- n
—_ &) N o1 w
T T T T T T YT Y T T Y N

o©
3]

o

PANDA detector
Results for G./Gy,

N

L e B A A |
6 8 10 12 14

9l(GeVic)?]

Conclusions and Outlook

Squares and triangles
represent the values
calculated in BABAR and
PS170 experiments.

Our results (for the case of
Ge = Gm) will be distributed
around the red horizontal
dashed line.

The error bars of our
calculations (only statistical)
are represented by the yellow
band.

The errors are a factor 10
smaller than those calculated
up to now.
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Electromal etic form factors in the time like re Iion with PANDA
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( panda

Signal:

Background:

PANDA detector

Simulated events for

Conclusions and Outlook

analysis using muons

p(GeV/c) 1.7 33 59 79
q*[(GeV/c)’] 5.4 82 129 16.7
php

Ge=0 10 10 10

Ge = Gm 10 10° 10

Ge=3-G, 105 106 10°
p(GeV/c) 1.7 3.3 5.9 7.9
q*[(GeV/c)?)] 54 82 129 167
o™ 108 108 2.108
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Comparison of electron and muon detection

R
( panda L
efficiencies

1| VTcuts, of =8.21 (GeVic)®
os 29 1 VT cuts, f = 16.7 (GeV/c)? |»

g
& os AN g z g.:
g orp N g g o ey
S ook f \ ] £ 07} y
c 05/ \ ° S g
2 o5 5 5 .
3 2 £ o \
2 o4 ] ER —pw \
2 03 el ] ] 4
5 2 g o J ~
g 02 8 S oz / ~e'e” \
~ e 3 3
0.4 oo 4 c o/
L L L L L L L L L It It It It It I I I I el It It It It I I I it
21'-08-06-04-02 0 02 04 06 0.8 1 T 208-06-04-02 0 0.2 0.4 06 0.8 ’108-06-04-02 0 0.2 0.4 06 0.8
€0SO, €osBgy €S0y,
o VTouts, ¢ =8.21 (GeVio) W VTouts, 9 (GeV/e) e VTouts, 7 (GeVic)®
0.9 — 0.9
0.8 0.8
0.7} - g'e” 0.7}
P ° o o8
g os g S os
g g g
2 04 2 2 04
g 0.3 g g 0.3
g 02 4 g o2
o o o
Lo - IRTT == N
% 20 740 60 80 100 120 140 160 180 % 7207740 60 80 100 120 140 160 180 % 7207740 60 80 100 120 140 160 180
9, [deg] 9, [deg] 9, [deg]

Plots by Gosia Sudol
Muon efficiency is lower than electron efficiency, due to partial implementation
of the muon detector in the simulation.
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( panda Test of muon identification with different cuts

muon PID:

Q@ Very Loose (VL) > 20%
Q Loose (L) > 45%

Q Tight (T) > 70%

@ Very Tight (VT) > 85%
Q Likelihood (LH) > 90%
Q LH > 95%

Kinematical fit:

Q CL(ptp™) > 10xCl(ntn™) Q Cl(ptp~)>10"°
Q CL(ptp™) >50xCL(nt7™) Q Cl(ptp~)>103
Q ClL(ptp) > 100xCL(nt7™) Q Cl(ptp)>1072
Q CL(ptu™) > 150xCL(mT7™) Q CL(ptp™)>01
@ CL(ptu™) >200xCL(mrT7™) Q CL(ptu™) >04
Q CL(pp™) > 300xCL(7+7™) Q CL(ptp~) >05

30 /36
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1E+0
1E-1

1E-2

efficiency

-
1E3 &
v
e

1E-4

PANDA detector Conclusions and Outlook

Background suppression: Only PID cuts

3.3 GeV/c - 8.2 (GeV/c)’
5.9 GeV/c - 12,9 (GeV/c)2

Pid Cuts Efficiency
Muon analysis

Q VL
QL
QT
O VT
5.9 muons @ LH > 90%
3.3muons Q LH > 95%
5.9 pions
3.3 pions - The signal to noise ratio
v . .
2 3 4 5 6 7 increases with LH level.
cut number - The final cut has been
selected to:

LH > 95%
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( panda Background suppression: Only kinematical fit cuts

3.3 GeV/c-8.2 (GeV/c)2
5.9 GeV/c - 12.9 (GeV/c)2

Mu CL cuts
Muon analysis
e i Q CL(ptp~)>10"°
Q Cl(ptp—) >10-3
2 Q CL(ptp)>1072
g 1E-1 (@] CL(;L+,LL7) > 0.1
£ - 5.0 muons _
% e 3.3 muons e CL(/J'+/J‘ ) > 0.4
v 5.9 pions e CL([L+,U47) > 05
3 3.3 pions
1E-2
0 1 2 3 4 5 6 7 .
cut number - The pu CL cut affects in the

same way signal and background
Cl(ptp~) >1073
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( panda Background suppression: Only kinematical fit cuts

3.3 GeV/c - 8.2 (GeV/c)2
5.9 GeV/c - 12.9 (GeV/c)2

Mu Pi CL cuts
muon analysis
1E+0 Q CL(ptp™) > 10xCL(ntm™)
5 3 muome Q CL(jt ) > 50xCL(m+n~)
5 15 D Q CL(ptpu™) > 100xCl(ntr™)
5 Q CL(ptp™) > 150xCL(7 "7 ™)
€ e Q CL(utp~) > 200xCL(r7™)
Q CL(ptp™) > 300xCL(7+7™)
- More restrictive cuts reduce the
1E'30 1 2 3 4 5 A 7 signal to noise ratio
cut number -CL(ptp™) > 10xCL(n m™)

and
- CL(p" ™) >50xCL(n m™)

33 /36
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Cuts effect on muons and pions angular

L) o S .
LBandE o gtributions at 3.3 GeV/c - 8.2 (GeV/c)?
Signal: 1 000 000 events Background: 93 415 000 events
Expected: 64 000 events Expected: ~64-10° events
pt W as pt T as pt
2 10°F 2 10°
§ = — §1o°

-
S

E_N

L 10°
102
E 10°
10 102
F 10
L | 1
PN I AN A AN VAV YA IV A Tl b b e b B b by Dot v Ly
-1 -08 -06 -04 -02 -0 02 04 06 08 1 -1 -08 -06 -04 02 0 02 04 06 08 1
cos 6, ©0S 6y

Combined 1: LH > 95%, CL(x)> 10> and CL(x)> 10 CL(n)
Combined 2: LH > 95%, CL(x)> 1072 and CL(p)> 50 CL(7)
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Cuts effect on muons and pions angular

L) o S .

LBanda o gtributions at 5.9 GeV/c - 12.9 (GeV/c)?
Signal: 1 000 000 events Background: 112 165 000 events
Expected: 3 000 events Expected: ~3-10° events

pt W as pt T aspt
£10°E £10F
@ ::_\——f—odi @

[T I I PR S P O e RN I P O PO PR Y
-0 02 04 06 08 1 -1 -08 -06 -04 -02 -0 02 04 06 08 1
cos 6y, c0s Oy,

T A T
-0.8 -0.6 -0.4 -0.2

Combined 1: LH > 95%, CL(x)> 10> and CL(x)> 10 CL(n)
Combined 2: LH > 95%, CL(x)> 1072 and CL(p)> 50 CL(7)
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( panda Conclusions and Outlook

ELECTRON ANALYSIS:

@ Measurement of G./G, is possible up to about 14 (GeV/c)? by measurement of
angular distribution.

@ At higher energies is still possible to use the integrated cross section for Form
Factors measurement.

@ The error bars are reduced by a factor 10 in comparison with previous
experiments.

@ 77~ background can be suppressed by a factor 10°.

@ 7070 background can be discriminated by kinematical constraints.

MUON ANALYSIS:
@ High background suppression implies drastic signal reduction in case of muons.

@ Complete implementation of muon detectors in new software is needed.

PANDA detector at FAIR next to GSI seems to be of high utility for our
measurements.

36
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