Mechanical and thermal aspects of the Backward Endcap

David Rodriguez Piñeiro

Gustavo Tejerina Alvarez

Jorge Sanchez Rosado

Iris Zimmermann

Outline

- Mechanical Design of the Backward Endcap
 - Location and support of the full system
 - The detector design
 - Insulation principle
 - Design of a Subunit (Prototype)
- Thermal Simulations on Crystal-Units
 - Studies with different materials and configurations

The Mechanical Design of the Backward Endcap

Location of the BW Endcap

- BW Endcap inside Target
 Spectrometer
- Adjustable support for precise alignment
- Full BW Endcap system moveable through rails

Support of the BW Endcap

The Detector Design

(Thermal insulation system not included)

- 540 crystals (Lead tungstade PbWO₄)
- Crystals must be cooled (-25°C)
 due to the poor light yield of PWO
 at room temperature
- 2 mounting plates (aluminum alloy)
- Mechanical feet between them (special design allows shrinking of the cool mounting plate)
- Backside insulation: space between mounting plate will be filled with vermiculite granulate

The Detector Design

Backside with 2 mounting plates and mechanical feet (pink/blue)

View without second plate: Pipes are placed inside the milled canals inside the mounting plate

Supporting Feet

Movable

Teflon coating on the slot reduces friction in order to allow the shrinkage of cold mounting plate

Supporting Feet

 Slots should point directly at the fixed foot to allow shrinkage of cold parts during ,,cooling" process

The Insulation Principle

The Design of a Subunit (16 crystals) for the BW Endcap Prototype

Front view:

Detailed look on a Subunit

Thermal Simulations on Crystal-Units

Finite Element Analysis with CAD-Software

Heat loads through the thermal insulator system

Heat sources:

- Heat from outside going through the walls
- Preamplifiers for the APD's (150 mW assumed for one crystal)
- > The cables for the readout
- The feet between the 2 mounting plates

Heat transfer mechanismens

The crystals will be flushed with nitrogen to avoid icing due to air humidity.

Heat loads through insulation

		Area [m²]	Heat load [W]	Heat load per m² [W/m²]
Vacuum shield for insulation assumed	Front plane	0,51	6,0	11,7
	Outer sides	0,98	11,6	11,7
	Inner cylindrical hole	0,34	4,0	11,7
Vermiculite granulate at backside assumed	Back plane	0,51	154,4	301,2

Simulations on a Unit of 4 crystals

with inner cross made of carbon fiber

Temp (Celsius)

-23.457 -23.585

-23.714

-23.843

-23.971

-24.100

-24.228

-24.357 -24.486

-24.614

-24.743

-24.871

-25.000

Cooling in the back & heat flux from the front (12 W/m²)

$$\Delta T = 1,54$$
° C

Additional heat load at the top (12 W/m²)

$$\Delta T = 5,77^{\circ}C$$

Improved Simulations on a Unit (4)

additional DF2000MA daylight film & copperfoil around each crystal

Additional heat flux from one side (12 W/m²)

Fulfills ΔT≤2,2°C but copper undergoes too much activation and therefore must be dropped!

Improved Simulations on a Unit (4)

with inner cross made of aluminum

Cooling in the back & heat flux from the front 12 W/m²

HOME THORE 12 WATER

$$\Delta T = 0.75^{\circ}C$$

Additional heat load of 12 W/m² at one side

Comparison

	Design of the Crystal Unit	ΔT along the Unit /°C (only front load)	ΔT along the Unit /°C (heat load at front and one side)
1)	Carbon fiber Alveole	1,54	5,77
2)	Inner cross aluminum	0,7 5	2,66
3)	Carbon fiber Alveole Crystals wrapped in copperfoil	o , 35	1,08

The temperature difference is still not small enough Further investigations on different configurations needed!

Summary & Outlook

- The design of both the final version and the prototype for the Backward Endcap is under development.
- Many parts are especially designed for best performance under special conditions (e.g. the shrinking of material)
- Previous configurations of crystal-units don't deliver the necessary temperature difference so that further simulation studies are needed
- Thermal measurements on a test panel of the vacuum system will be done soon