Analysis

Results

Simulation and analyis of $\bar{p}p \rightarrow e^+e^-\pi^0$ using the TDA approach

with the BaBar-like software

María Carmen Mora Espí

Institut für Kernphysik, Johannes Gutenberg Universität, Mainz

PANDA Collaboration Meeting - September, 2011 Computing Session

Simulation and analyis of $ar{p}p
ightarrow e^+e^-\pi^0$,using the TDA approach, with the BaBar-like software

p a n d a

Simulation

Outline

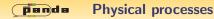
Analysis

Result

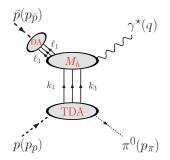
Conclusion

1 Introduction: Transition Distribution Amplitudes (TDA)

2 Simulation characteristics ($\bar{p}p \rightarrow e^+e^-\pi^0$ and $\bar{p}p \rightarrow \pi^+\pi^-\pi^0$)


Simulation and analyis of $\bar{p}p
ightarrow e^+e^-\pi^0$,using the TDA approach, with the BaBar-like software

Simulation


Analysis

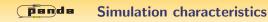
Results

Conclusion

TDA'S APPROACH¹:

- Study the validity of TDA's: Measuring the cross section of $(\bar{p}p \rightarrow e^+e^-\pi^0)$ and comparing it with the theory.
- Approach valid at high energies.
- Event generator developed for Babar-like framework.
- Main background process is $\bar{p}p \rightarrow \pi^+\pi^-\pi^0$.

¹J. P. Lansberg et al., Phys Rev D 76, 111502(R) (2007)


Simulation and analyis of $\bar{p}p
ightarrow e^+e^-\pi^0$,using the TDA approach, with the BaBar-like software

Simulation)

Analysis

Result

Conclusion

4 / 13

- Signal $(\bar{p}p \rightarrow e^+e^-\pi^0)^2$:
 - $\bullet~W^2{=}5\,\text{GeV}^2$ and $10\,\text{GeV}^2~(W^2{=}s)$
 - π^0 Forward and Backward
 - \rightarrow 4 simulations
 - Theoretical cross section calculated for $\Delta_{T_{-0}} = 0...$
 - $\bullet~\dots$ integrating over a $\Delta_{{\cal T}_{\pi^0}} < 0.5\,{\rm GeV}$
- Background ($\bar{p}p \rightarrow \pi^+\pi^-\pi^0$):
 - $\pi^+\pi^-\pi^0$ the same angular distribution as the signal.
 - We assume a background cross section 10⁶ times higher than signal

Simulation and analyis of $\bar{p}p \rightarrow e^+e^-\pi^0$, using the TDA approach, with the BaBar-like software

²Based on J.P. Lansberg Phys Rev D 76, 111502(R) (2007)

Analysis

Number of true events simulated

	Reaction	$W^2(\text{GeV}^2)$	π^0	N _{events}
pu	$\pi^+\pi^-\pi^0$	5	forward	$pprox 10^8$
essio	$\pi^+\pi^-\pi^0$	5	backward	$pprox 10^8$
Background suppression	$\pi^+\pi^-\pi^0$	10	forward	$pprox 10^8$
5 B	$\pi^+\pi^-\pi^0$	10	backward	$pprox 10^8$
~	$e^+e^-\pi^0$	5	forward	$pprox 10^{6}$
Efficiency studies	$e^+e^-\pi^0$	5	backward	$pprox 10^{6}$
Effic	$e^+e^-\pi^0$	10	forward	$pprox 10^{6}$
	$e^+e^-\pi^0$	10	backward	$pprox 10^{6}$
7 (0	$e^+e^-\pi^0$	5	forward	150 000
Expected statistics	$e^+e^-\pi^0$	5	backward	150 000
Expe	$e^+e^-\pi^0$	10	forward	6 000
_ 0/	$e^+e^-\pi^0$	10	backward	6 000

Simulation and analyis of $ar{p}
ho o e^+e^-\pi^0$,using the TDA approach, with the BaBar-like software

Simulation

Results

Conclusion

6 / 13

- Simulation
- Best cuts selection
- Signal/Noise ratio
- Analysis w/o Background contamination
- Analysis with Background contamination
- Error Analysis

Simulation and analyis of $\bar{p}p
ightarrow e^+e^-\pi^0$,using the TDA approach, with the BaBar-like software

e b(n e q

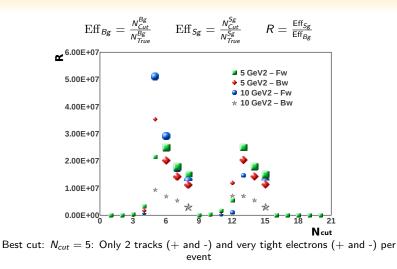
Result

- $\bullet\,$ Event selection: Combinations of $\pi^0+e^++e^-$ candidates per event
 - Particle identification cuts (PID):

Analysis process

- Only 2 tracks (+ and -) and very loose electrons (+ and -) per event
- Only 2 tracks (+ and -) and loose electrons (+ and -) per event
- Only 2 tracks (+ and -) and tight electrons (+ and -) per event
- Only 2 tracks (+ and -) and very tight electrons (+ and -) per event
- At least 2 tracks (+ and -) with 2 very loose electrons (+ and -) per event
- At least 2 tracks (+ and -) with 2 loose electrons (+ and -) per event
- At least 2 tracks (+ and -) with 2 tight electrons (+ and -) per event
- At least 2 tracks (+ and -) with 2 very tight electrons (+ and -) per event
- Kinematic fit cuts Confidence level (CL):
 - $CL(e^{+/-}) > 0.001$
 - ${\rm CL}(e^{+/-})>0.001$ and ${\rm CL}(e^{+/-})>{\rm CL}(\pi^{+/-})$
 - $\mathsf{CL}(\mathsf{e}^{+/-}) > 0.001$ and $\mathsf{CL}(\mathsf{e}^{+/-}) > 2 \cdot \mathsf{CL}(\pi^{+/-})$
 - $\operatorname{CL}(e^{+/-}) > 0.001$ and $\operatorname{CL}(e^{+/-}) > 3 \cdot \operatorname{CL}(\pi^{+/-})$
- Combinations of PID and CL cuts.
- Kinematic region selection (Only for analysis):
 - Q^2 cuts in the region in which the cross section is integrated
 - $\Delta \tau_{\pi^0} < 0.5 \, {
 m GeV}$

Simulation and analyis of $\bar{p}p
ightarrow e^+e^-\pi^0$,using the TDA approach, with the BaBar-like software



Results

Best Cut Selection

Simulation and analyis of $ar{p}p o e^+e^-\pi^0$,using the TDA approach, with the <code>BaBar-like software</code>

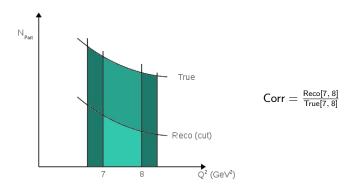
Results

UNIVERSITÄT MAINZ

Background contamination fraction

W ² -	Forward		Backward		
	Signal	Background	Signal	Background	
	Expected number of true events (Calculated)				
	N ^{Sg} True	$\frac{N_{True}^{Bg}}{1.5 \cdot 10^{11}}$	N ^{Sg} True	N ^{Bg} True	
5	150000	$1.5\cdot 10^{11}$	150000	$1.5 \cdot 10^{11}$	
10	6000	$6 \cdot 10^9$	6000	$6 \cdot 10^9$	
Efficiencies [%] (From Simulations with high statistics)					
	Eff _{Sg}	Eff _{Bg}	Eff _{Sg}	Eff _{Bg}	
5	43.3	$2 \cdot 10^{-6}$	34.1	$9.7 \cdot 10^{-7}$	
10	47.2	$9.3 \cdot 10 - 7$	26.0	$2.8 \cdot 20^{-6}$	
	Reconstructed events after efficiencies (True Efficiency)				
	N_{Reco}^{Sg}	N_{Reco}^{Bg}	N ^{Sg} _{Reco}	N_{Reco}^{Bg}	
5	64916	3023	51134	1449	
10	2834	55	1562	166	
Background Contamination [%] $\left(\frac{N_{Reco}^{Bg}}{N_{Reco}^{Bg}}\right)$					
	Cont _{Bg} , _{Fw}		Cont _{Bg, Bw}		
5	4.4		2.8		
10	1.9		9.6		

Simulation and analyis of $\bar{p}p
ightarrow e^+ e^- \pi^0$,using the TDA approach, with the BaBar-like software



Kinematical region cuts

	$W^2 = 5 \mathrm{GeV^2}$	$W^2 = 10 \mathrm{GeV^2}$
Simulation limits	$3.61 < Q^2 < 5.29$	$5.76 < Q^2 < 9.18$
Analysis limits	$3.8 < Q^2 < 4.2$	$7.00 < Q^2 < 8.00$

Simulation and analyis of $ar{p}p
ightarrow e^+e^-\pi^0$,using the TDA approach, with the BaBar-like software

Analysis

Results

Conclusion

Analysis without taking background contamination into account

SELECTION CUT:

Only 2 tracks (+ and -) and very tight electrons (+ and -) per event

KINEMATIC REGION SELECTION: $3.8 < Q^2 < 4.2$ at $W^2 = 5 \text{ GeV}^2$; $7.00 < Q^2 < 8.00$ at $W^2 = 10 \text{ GeV}^2$

Simulation	N _{True w/o} Bg	N _{Reconstructed} w/o Bg	N _{Corrected w/o Bg}
5 GeV - fw	72263 ± 269	30661 ± 175	72732 ± 459
5 GeV - bw	72405 ± 269	25386 ± 159	73164 ± 517
10 GeV - fw	1336 \pm 37	662 ± 26	1319 ± 52
10 GeV - bw	1313 ± 36	394 ± 20	1312 ± 66

Simulation and analysi of $\bar{p}p \rightarrow e^+e^-\pi^0$, using the TDA approach, with the BaBar-like software

Analysis

Results

Conclusion

Analysis taking background contamination fraction into account

 $N_{Reconstructed} = N_{Background\ fraction} + N_{Reconstructed\ w/o\ Bg}$

Simulation	N _{Reconstructed}	N _{Signal fraction}	$\epsilon_{\it rel}(N_{\it Signal\ fraction})[\%]$
5fw	31967.2 ± 178.8	30544 ± 172.7	0.57
5bw	26066.8 ± 161.5	25348 ± 158.1	0.62
10fw	674.4 ± 26.0	661 ± 25.5	3.9
10bw	428.5 ± 20.7	387 ± 19.0	4.9
		N _{Corrected}	$\epsilon_{\it rel}(N_{\it Corrected})[\%]$
5fw		72454.3 ± 453.1	0.63
5bw		73054.5 ± 513.9	0.70
10fw		1317.1 ± 51.2	3.9
10bw		1288.5 ± 63.4	4.9

Simulation and analyis of $\bar{p}p
ightarrow e^+e^-\pi^0$,using the TDA approach, with the BaBar-like software

12 / 13

Simulation

Analysis

Result

Conclusion

- First approximation analysis for the measurement of $\bar{p}p \to e^+e^-\pi^0$ in the TDA approach is done.
- Error calculation takes into account only statistic errors. Numbers to be checked.
- A reasonable measurement of the cross section could be done in all cases. First sight on TDA approach validity.

- A new event generator for signal is needed (π^0 not only at $\Delta_{T_{\pi^0}} = 0$ but $\Delta_{T_{\pi^0}} < 0.5$).
- Cross section of background in the same kinematic region is unknown.
- A new event generator for background is needed.

Simulation and analyis of $\bar{p}p \rightarrow e^+ e^- \pi^0$, using the TDA approach, with the BaBar-like software