Measurement of $\bar{p}p \rightarrow e^+e^-$ and $\bar{p}p \rightarrow e^+e^-\pi^0$ with PANDA Simulations with BaBar-like framework

María Carmen Mora Espí

Institut für Kernphysik, Johannes Gutenberg Universität, Mainz

moraespi@kph.uni-mainz.de

XL PANDA Collaboration Meeting - GSI (Darmstadt) Physics Analysis Meeting March, 7th - 2012

1 PANDA

- Electromagnetic Form Factors in time-like region
 - Introduction
 - Simulation characteristiques $(\bar{p}p
 ightarrow e^+e^-$ and $\bar{p}p
 ightarrow \pi^+\pi^-)$
 - Analysis
 - Results

Validity of Transition Distribution Amplitudes (TDA)

- Introduction to TDA approach
- Simulation characteristics $(\bar{p}p
 ightarrow e^+e^-\pi^0$ and $\bar{p}p
 ightarrow \pi^+\pi^-\pi^0)$
- Analysis
- Results

4 Conclusions

Conclusions

PANDA challenges and capabilities

- 1.- Nucleon structure studies: Measurement of FF in time-like region.
- 2.- Study the validity of the TDA approach.
- 3.- Physics cases:
 - Study of the signal channels: $\bar{p}p \rightarrow e^+e^-$ and $\bar{p}p \rightarrow e^+e^-\pi^0$.
 - Main background channels: $\bar{p}p \rightarrow \pi^+\pi^- \rightarrow$ and $\bar{p}p \rightarrow \pi^+\pi^-\pi^0$ respectively.

 $\Rightarrow 10^{6}$ times higher than signal in average.

- Challenge: Good suppression of pions as background.
- 4.- PANDA Detector:
 - High Luminosity: $L = 2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - Good tracking system.
 - Good PID capabilities.

\rightarrow SIMULATION

(EMFF in time-like region)

TDA validity

Conclusions

Electromagnetic Form Factors in time-like region

Electromagnetic Form Factors

Parameterize the hadronic current in the matrix element for elastic electron scattering and its crossed process annihilation.

Matrix element for e-p scattering:

$$M = \frac{e^2}{q^2} \bar{u}(k_2) \gamma^{\mu} u(k_1) \bar{u}(p_2) \left[F_1(q^2) \gamma_{\mu} + i \frac{\sigma_{\mu\nu} q^{\nu}}{2M} F_2(q^2) \right] u(p_1) \qquad \qquad F_1: \text{ Dirac FF} \\ F_2: \text{ Pauli FF}$$

One can define the Sachs Form Factors as:

- $G_E = F_1 + \tau F_2$ where $\tau = \frac{q^2}{4M^2c^4}$ $G_M = F_1 + F_2$
- G_E and G_M depend on transferred momentum, q^2 .
- We are interested in the measurement of the Electromagnetic Form Factors, G_E and G_M in the time-like region.

Conclusions

Access to time-like form factors

We can access via the reactions $\bar{p}p \rightarrow \ell^+ \ell^-$

Cross Section $\bar{p}p \rightarrow \ell^+ \ell^-$

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^{2}(\hbar c)^{2}}{8M_{p}\sqrt{\tau(\tau-1)}} \left[\left| G_{m} \right|^{2} \left(1 + \cos^{2}\theta \right) + \frac{\left| G_{e} \right|^{2}}{\tau} \left(1 - \cos^{2}\theta \right) \right]$$

- With high statistics one can measure the angular distribution.
- Knowing the luminosity one can calculate the diferential cross section.

$$\frac{d\sigma}{d\cos\theta} = \frac{1}{L}\frac{d^2N}{dt\cdot d\cos\theta}$$

• The total cross section can be calculated from the total number of signal events.

p a n d a

TDA validity

Conclusions

• Signal
$$(\bar{\rho}p \rightarrow e^+e^-)$$
:
• Using the cross section formula for three FF hypotheses:
• $G_E = 0$
• $G_E = G_M$
• $G_E = 3 \cdot G_M$
• Integrating for:
• full luminosity ($\mathfrak{L} = 2 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1}$)
• $10^7 \text{ s} (\sim 116 \text{ days})$ of measurement time

- Major Background $(\bar{p}p \rightarrow \pi^+\pi^-)$:
 - The background cross section is not well known.
 - A symmetrized model fitting the existing experimental data has been done as imput for the simulation.
 - Background cross section known to be 10^6 times higher than the signal in average.
- Minor Background ($\bar{p}p \rightarrow \pi^0 \pi^0$):
 - The π^0 can decay via Dalitz decay $(\pi^0\to\gamma e^+e^-)$ and give the same signature than the signal.
 - $\bullet\,$ The probability of this possibility is of the order of 10^{-4} .

Conclusions

Number of events simulated

Signal:

Background:

 10^6 events simulated at each energy for each hypothesis ($G_E = 0$, $G_E = G_M$ or $G_E = 3 \cdot G_M$)

For analysis:

$q^2 (GeV/c)^2$	Expected statistics	
5.40	$1.07\cdot 10^6$	
7.43	$1.24\cdot 10^5$	
7.64	$1.03\cdot 10^5$	
8.20	$6.47\cdot 10^4$	
11.03	9078	
12.90	3204	
13.86	1985	
16.69	572	
22.29	81	

$q^2 \left[({ m GeV/c})^2 ight]$	8.2	12.9	16.7
$\pi^+\pi^-$	10 ⁸	10 ⁸	$2 \cdot 10^8$
$\pi^0\pi^0 \rightarrow$			
$\gamma\gamma + \gamma\gamma$	10 ⁶	10 ⁶	10 ⁶
$\gamma\gamma+\gamma e^+e^-$	10 ⁶	10 ⁶	10 ⁶
$\gamma e^+ e^- + \gamma e^+ e^-$	10 ⁶	10 ⁶	10 ⁶

1 event - 2 s cpu time $\to \approx$ 6 cpu years in only 1 machine for 1 channel background simulation.

Reaction reconstruction

Event selection: Combinations of e^+e^- candidates per event

- Kinematic fit cuts (CL):
 - E and p have been measured for each track.
 - 4-constraints fit (*E*, *p*, *m*, r_0) performed with some particle hypothesis (*e*, μ , *p*, π and *K*).
 - Calculated the fit confidence level for each hypothesis.

• $CL(e^+e^-) > 10 \cdot CL(\pi^+\pi^-)$

• ${\sf CL}(e^+e^-)>10^{-3}
ightarrow$ Necessary to suppress the whole π^0 background

Introduction

p a n d a

(EMFF in time-like region)

TDA validity

Conclusions

Introduction

(EMFF in time-like region)

TDA validity

Conclusions

Signal reconstruction efficiency $G_e = G_m$; p = 3.3 GeV/c; $q^2 = 8.2 (\text{GeV/c})^2$

- PID cuts don't represent a big suppression in efficiency.
- CL cut represents about 50% of signal reduction.
- After combination of PID and CL cuts the efficiency is about 40%.

Signal angular distribution

 $G_e = 0;$ p = 3.3 GeV/c; $g^2 = 8.2 (\text{GeV/c})^2$

- Realistic statistics: 64 000 events.
- Good angular distribution reconstruction after acceptance correction.
- The acceptance correction have been calculated using 1 000 000 events and isotropical distribution simulation.

p a n d a

EMFF in time-like region

Results for G_e/G_m

TDA validity

Conclusions

- Squares and triangles represent the values calculated in BABAR and PS170 experiments.
- Our results (for the case of $G_e = G_m$) will be distributed around the red horizontal dashed line.
- The error bars of our calculations (only statistical) are represented by the yellow band.
- The errors are a factor 10 smaller than those calculated up to now.

EMFF in time-like region

(TDA validity)

Conclusions

Validity of Transition Distribution Amplitudes (TDA)

Introduction

EMFF in time-like region

TDA validity

Conclusions

Introduction to the TDA approach^a:

^aJ. P. Lansberg et al., Phys Rev D 76, 111502(R) (2007)

- Transition Distribution Amplitudes new mathematic objects describing the transition between a barion and a meson.
- Useful to calculate cross sections of hard exclusive processes.
- Approach valid at higher energies.
- Study the validity of TDA approach: Measuring the cross section of $(\bar{p}p \rightarrow e^+e^-\pi^0)$ and comparing it with the theory.

Conclusions

Signal and background simulation

•
$$W^2 = 5 \text{ GeV}^2$$
 and 10 GeV^2 ($W^2 = s$)

- π^0 Forward and Backward
 - \rightarrow 4 simulations
- Theoretical cross section calculated for $\Delta_{T_{-0}} = 0...$
- ... integrating over a $\Delta_{T_{\pi 0}} < 0.5 \, {
 m GeV}$ and $[Q_{min}, Q_{max}]^{b}$

^aBased on J.P. Lansberg Phys Rev D 76, 111502(R) (2007) ^bValues for Q_{min} and Q_{max} are shown later in slide 22

• Background ($\bar{p}p \rightarrow \pi^+\pi^-\pi^0$):

- $\pi^+\pi^-\pi^0$ the same angular distribution as the signal.
- \bullet We assume a background cross section 10^6 times higher than signal

panda

Number of events simulated

	Reaction	$W^2(\text{GeV}^2)$	π^0	N _{events}
Background suppression	$\pi^{+}\pi^{-}\pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}$	5 5	forward backward	$pprox 10^8 \ pprox 10^8$
	$\pi^{+}\pi^{-}\pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}$	10 10	forward backward	$pprox 10^8 \ pprox 10^8$
Efficiency studies	$e^+e^-\pi^0 e^+e^-\pi^0$	5 5	forward backward	$pprox 10^6 \ pprox 10^6$
	$e^+e^-\pi^0 e^+e^-\pi^0$	10 10	forward backward	$pprox 10^6 \ pprox 10^6$
Expected statistics	$e^+e^-\pi^0 e^+e^-\pi^0$	5 5	forward backward	150 000 150 000
	$e^+e^-\pi^0 e^+e^-\pi^0$	10 10	forward backward	6 000 6 000

Reaction reconstruction

Event selection: Combinations of $\pi^0 + e^+ + e^-$ candidates per event

• Particle identification cuts (PID):

• Only 2 tracks (+ and -) and very loose electrons (+ and -) per event

- $\bullet~$ Only 2 tracks (+ and -) and loose electrons (+ and -) per event
- Only 2 tracks (+ and -) and tight electrons (+ and -) per event
- Only 2 tracks (+ and -) and very tight electrons (+ and -) per event
- At least 2 tracks (+ and -) with 2 very loose electrons (+ and -) per event
- At least 2 tracks (+ and -) with 2 loose electrons (+ and -) per event
- At least 2 tracks (+ and -) with 2 tight electrons (+ and -) per event
- At least 2 tracks (+ and -) with 2 very tight electrons (+ and -) per event

• Kinematic fit cuts - Confidence level (CL):

•
$$CL(e^{+/-}) > 10^{-3}$$

•
$$CL(e^{+/-}) > 10^{-3}$$
 and $CL(e^{+/-}) > CL(\pi^{+/-})$

- $CL(e^{+/-}) > 10^{-3}$ and $CL(e^{+/-}) > 2 \cdot CL(\pi^{+/-})$
- $CL(e^{+/-}) > 10^{-3}$ and $CL(e^{+/-}) > 3 \cdot CL(\pi^{+/-})$

Kinematic region selection (Only for analysis)

• Q^2 cuts in the region in which the cross section is integrated

•
$$\Delta_{{\cal T}_{\pi^0}} < 0.5\,{
m GeV}$$

EMFF in time-like region

TDA validity

Best Cut Selection

Background contamination fraction

\A/2	Forward		Backward	
vv	Signal	Background	Signal	Background
		Expected number of th	rue events (Calculat	ted)
	N ^{Sg} True	N ^{Bg} True	N ^{Sg} True	N ^{Bg} _{True}
5	150000	$1.5 \cdot 10^{11}$	150000	$1.5\cdot10^{11}$
10	6000	$6 \cdot 10^9$	6000	$6 \cdot 10^9$
		Efficiencies [%] (From Simu	ulations with high s	tatistics)
	Eff _{Sg}	Eff _{Bg}	Eff _{Sg}	Eff _{Bg}
5	43.28 ± 0.05	$(2.0 \pm 1.8) \cdot 10^{-6}$	34.09 ± 0.05	$(1.0 \pm 1.4) \cdot 10^{-6}$
10	47.24 ± 0.05	$(0.9 \pm 1.3) \cdot 10^{-6}$	26.04 ± 0.04	$(2.8 \pm 1.9) \cdot 10^{-6}$
		Reconstructed events after	efficiencies (True·E	fficiency)
	N_{Reco}^{Sg}	N ^{Bg} _{Reco}	N ^{Sg} _{Reco}	N_{Reco}^{Bg}
5	64916	3023	51134	1449
10	2834	55	1562	166
Background Contamination [%] ($\frac{N_{Reco}^{Bg}}{N_{Reco}^{Bg}+N_{Reco}^{Sg}}$)				
		Cont _{Bg, Fw}		Cont _{Bg, Bw}
5	4.4 ± 3.7		2.8 ± 3.8	
10	1.9 ± 2.7		9.6 ± 5.8	

EMFF in time-like region

(TDA validity)

Conclusions

Kinematic region cuts

	$W^2 = 5 \mathrm{GeV}^2$	$W^2 = 10 \mathrm{GeV^2}$
Simulation limits	$3.61 < Q^2 < 5.29$	$5.76 < Q^2 < 9.18$
Analysis limits	$3.8 < Q^2 < 4.2$	$7.00 < Q^2 < 8.00$

In addition: $\Delta_{{\cal T}_{\pi^0}} <$ 0.5 GeV

Conclusions

Analysis without taking background contamination into account

Selection cut

Only 2 tracks (+ and -) and very tight electrons (+ and -) per event

Kinematic region cut

 $3.8 < Q^2 < 4.2$ at $W^2 = 5 \, {\rm GeV}^2$; $7.00 < Q^2 < 8.00$ at $W^2 = 10 \, {\rm GeV}^2$; $\Delta_{T_{\pi^0}} < 0.5 \, {\rm GeV}$

Simulation	N _{True w/o Bg}	$N_{Reconstructed w/o Bg}$	$N_{Corrected w/o Bg}$	$\epsilon_{\it rel} [\%]$
5 GeV - fw	72263 ± 269	30661 ± 175	72732 ± 433	0.6
5 GeV - bw	72405 ± 269	25386 ± 159	73164 ± 488	0.7
10 GeV - fw	1336 \pm 37	662 ± 26	1319 ± 51	3.9
10 GeV - bw	1313 ± 36	394 ± 20	1312 ± 66	5.0

Analysis taking background contamination fraction into account

$$N_{Reconstructed} = N_{Background\ fraction} + N_{Reconstructed\ w/o\ Bg}$$

Simulation	N _{Reconstructed}	$N_{Signal\ fraction}$	$\epsilon_{\it rel}(N_{\it Signal\ fraction})[\%]$
5fw	31967 ± 179	30544 ± 1190	4
5bw	26067 ± 162	25348 ± 1601	4
10fw	674 ± 26	661 ± 31	5
10bw	429 ± 21	387 ± 31	8
		N _{Corrected}	$\epsilon_{\it rel}(N_{\it Corrected})[\%]$
5fw		72454 ± 2825	4
5bw		73055 ± 2889	4
10fw		1317 ± 62	5
10bw		1289 ± 104	8

Conclusions

Conclusions

25 / 26

• $\bar{p}p \rightarrow e^+e^-$

- $\bullet\,$ The measurement of this reaction with $\overline{\mathsf{P}}\mathsf{ANDA}$ is feasible.
- A separation of G_E and G_M will be possible.
- The error bars are improved in a factor 10 with respect to other experiments.

• $\bar{p}p \rightarrow e^+e^-\pi^0$

- $\bullet~$ The first results are promissing and show that the reaction would be measurable with $\overline{P}ANDA.$
- A first sight on the TDAs will be possible.

Outlook:

• More realistic event generators for signal and background are needed.

Conclusions

Resolution 1290x304-p Free Photoshop PSD Ne downlow www.pedgraphic.com

Cut number definitions

- 1: No additional cuts, only event selection cuts involved
- 2: Only one electron and one positron (2 tracks) with Very Loose probability.
- 3 : Only one electron and one positron (2 tracks) with Loose probability.
- 4 : Only one electron and one positron (2 tracks) with Tight probability.
- 5: Only one electron and one positron (2 tracks) with Very Tight probability.
- 6 : Cut 5 and Cut 17
- 7 : Cut 5 and Cut 18
- 8 : Cut 5 and Cut 19
- 9: At least one electron and one positron with Very Loose probability.
- 10 : At least one electron and one positron with Loose probability.
- 11 : At least one electron and one positron with Tight probability.
- 12 : At least one electron and one positron with Very Tight probability.
- 13 : Cut 12 and Cut 17
- 14 : Cut 12 and Cut 18
- 15 : Cut 12 and Cut 19
- 16 : Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than 10^-3
- 17: Cut 16 and Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than the confidence level of the fit with $\pi^+\pi^-\pi^0$ hypothesis
- 18: Cut 16 and Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than two times the confidence level of the fit with $\pi^+\pi^-\pi^0$ hypothesis
- 19: Cut 16 and Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than three times the confidence level of the fit with $\pi^+\pi^-\pi^0$ hypothesis
- 20: Cut 16 and Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than four times the confidence level of the fit with $\pi^+\pi^-\pi^0$ hypothe