Simulations for the measurement of $\bar{p}p \rightarrow e^+e^-\pi^0$ with PANDA in the TDA approach HK 8.9

María Carmen Mora Espí

Helmholtz Institute Mainz

moraespi@kph.uni-mainz.de

DPG 2012 - Johannes Gutenberg Universität, Mainz March, 19th - 2012

Simulations for the measurement of $\bar{p}p \rightarrow e^+e^-\pi^0$ with \bar{P} ANDA in the TDA approach ,HK 8.9

1 / 10

1 Introduction to Transition Distribution Amplitudes (TDA)

2 Simulation

Simulations for the measurement of $ar{p}p
ightarrow e^+ e^- \pi^0$ with $ar{ extsf{P}}$ ANDA in the TDA approach ,HK 8.9

- Transition Distribution Amplitudes¹ are new non perturbative objects describing the transition between a proton and a pion.
- Approach valid at higher momentum transfer.
- Study the validity of TDA approach: Measuring the cross section of $\bar{p}p \rightarrow e^+e^-\pi^0$ and comparing it with the theory.

Simulations for the measurement of $\bar{p}p \rightarrow e^+e^-\pi^0$ with **P**ANDA in the TDA approach ,HK 8.9

¹J. P. Lansberg et al., Phys Rev D 76, 111502(R) (2007)

• Background ($\bar{p}p \rightarrow \pi^+\pi^-\pi^0$):

- No data available in the region we want to measure.
- We assume for $\pi^+\pi^-\pi^0$ the same angular distribution as the signal.
- We assume a background cross section 10⁶ times higher than signal

Simulations done in the old BaBar-like framework

Simulations for the measurement of $\bar{p}p \rightarrow e^+e^-\pi^0$ with \bar{P} ANDA in the TDA approach ,HK 8.9

TDA	Simulation)	Analysis	1	Results	Conclusion
Number of e	vents	simulated		F BN G S1	HELMHO ASSOCI. Heimholtz Institu	ATION JOHANNES GUTENBERG UNIVERSITÄT
		Reaction	W^2 (GeV ²)	π^0	N _{events}	
	ground ession	$\pi^{+}\pi^{-}\pi^{0}$ $\pi^{+}\pi^{-}\pi^{0}$	5 5	forward backward	$pprox 10^8 \ pprox 10^8$	
	Backg suppr	$\pi^+\pi^-\pi^0 = \pi^+\pi^-\pi^0$	10 10	forward backward	$pprox 10^8 pprox 10^8$	
	iency ies	$e^+e^-\pi^0 e^+e^-\pi^0$	5 5	forward backward	$pprox 10^6 pprox 10^6$	
	Effic	$e^+e^-\pi^0 e^+e^-\pi^0$	10 10	forward backward	$pprox 10^6 pprox 10^6$	
	ected istics	$e^+e^-\pi^0 e^+e^-\pi^0$	5 5	forward backward	150 000 150 000	
	Exp stati	$e^+e^-\pi^0 e^+e^-\pi^0$	10 10	forward backward	6 000 6 000	
		For expect	ted statistics:	$\mathcal{L} = 2 \text{fb}^{-2}$		

Simulations done in the new cluster of the Helmoltz Institute Mainz

Simulations for the measurement of $\bar{p}p\,\rightarrow\,e^+\,e^-\,\pi^0$ with $\overline{\rm P}{\rm ANDA}$ in the TDA approach ,HK 8.9

Event selection: Combinations of $\pi^0 + e^+ + e^-$ candidates per event

- Particle identification cuts (PID):
 - · Different cuts on the particle identification probability
- Kinematic fit cuts Confidence level (CL):
 - Different cuts on the quality of the fit for signal and background hypotheses

Kinematic region selection (Only for analysis)

• q^2 cuts in the region in which the cross section is integrated					
		$W^2 = 5 \mathrm{GeV}^2$	$W^2=10{ m GeV}^2$		
	Simulation limits	$3.61 < q^2 < 5.29$	$5.76 < q^2 < 9.18$		
	Analysis limits	$3.8 < q^2 < 4.2$	$7.00 < q^2 < 8.00$:	
• $\Delta au_{\pi^0} < 0.5 { m GeV}$					

Simulations for the measurement of $\bar{p}p
ightarrow e^+ e^- \pi^0$ with \bar{P} ANDA in the TDA approach ,HK 8.9

15

12

q

N cut

0.00E+00

0

3

6

Only 2 tracks (+ and -) and very tight electrons (+ and -) per event

18

21

Simulations for the measurement of $\bar{p}p
ightarrow e^+ e^- \pi^0$ with \bar{P} ANDA in the TDA approach ,HK 8.9

 $S_{Sg} =$

NSg True

 $\frac{\operatorname{Eff}_{Sg} \cdot N_{True}^{Sg}}{\sqrt{\operatorname{Eff}_{Sg} \cdot N_{True}^{Sg} + \operatorname{Eff}_{Bg} \cdot}}$

Background contamination:

$$\mathsf{Cont}_{Bg} = rac{N^{Bg}_{Reco}}{N^{Bg}_{Reco} + N^{Sg}_{Reco}}$$

14/2	Fo	rward		ckward
	Signal	Background	Signal	Background
	Red	constructed events after effi	ciencies (True·Effic	ciency)
	N_{Reco}^{Sg}	N^{Bg}_{Reco}	N_{Reco}^{Sg}	N_{Reco}^{Bg}
5	64916	3023	51134	1449
10	2834	55	1562	166
Background Contamination [%]				
	Con	t _{Bg, Fw}	Con	t _{Bg, Bw}
5	4.4	± 3.7	2.8	± 3.8
10	1.9	± 2.7	9.6	\pm 5.8

Simulations for the measurement of $\bar{p}p \rightarrow e^+e^-\pi^0$ with \bar{P} ANDA in the TDA approach ,HK 8.9

8 / 10

TDA	Simulation	Analysis	Results		Conclusion
Results			panda 651	HELMHOLTZ ASSOCIATION Helmholtz Institute Mainz	JGU JOHANNES GUTENBERG UNIVERSITÄT MARZ

$$N_{Sg+Bg}^{Reconstructed} = N_{Bg}^{Calculated} + N_{sg}^{Reconstructed}$$

Simulation	$N_{Sg+Bg}^{Reconstructed}$	N _{Sg}	$Error_{relative}[\%]$
5fw 5bw 10fw 10bw	$\begin{array}{c} 31967 \pm 179 \\ 26067 \pm 162 \\ 674 \pm 26 \\ 429 \pm 21 \end{array}$	$\begin{array}{c} 30544 \pm 1190 \\ 25348 \pm 1601 \\ 661 \pm 31 \\ 387 \pm 31 \end{array}$	RY 4 5 8
	N ^{True} _{Sg}	$N_{Sg}^{Corrected}$	$Error_{relative}[\%]$
5fw	N ^{True} 72263	$N_{Sg}^{Corrected}$ 72454 ± 2825	Error _{relative} [%]
5fw 5bw	N ^{True} 72263 72405	$N_{Sg}^{Corrected}$ 72454 ± 2825 73055 ± 2889	Error _{relative} [%] 4 4
5fw 5bw 10fw	N _{Sg} ^{True} 72263 72405 1336	$\frac{N_{Sg}^{Corrected}}{72454 \pm 2825} \\ 73055 \pm 2889 \\ 1317 \pm 62$	Error _{relative} [%] 4 4 5

Errors are only statistical

Simulations for the measurement of $ar{p}p
ightarrow e^+ e^- \, \pi^0$ with $ar{ extbf{P}}$ ANDA in the TDA approach ,HK 8.9

- First analysis for the measurement of $\bar{p}p \rightarrow e^+e^-\pi^0$ PANDA with in the TDA approach is done.
- A background rejection close to 10⁸ is achievable
- The efficiency and acceptance of the detector are taken into account.
- A reasonable measurement of the cross section could be done in all cases with a relative error lower than 10%.
- A measurement of the TDA seems possible with PANDA.

Related Presentations

Monday:

- HK 1.5, 15:15: Dmitry Khaneft, "Feasibility studies of proton electromagnetic form factors with the PANDA detector"
- HK 8.7, 18:15: Yue Ma, "Proposal for a revisit of antiproton nucleus collision experiment with PANDA"
- HK 8.8, 18:30: Bertalan Feher, "Feasibility Study of a Transversely Polarized Target in Panda"

Thursday:

● HK 45.3, 14:00: Iris Zimmermann "Feasibility studies of proton FF measurements in p̄p-collisions at PANDA"

Friday:

HK 54.7, 12:45: Manuel Zambrana, "Monte Carlo event generators for Panda"

Simulations for the measurement of $\bar{p}p
ightarrow e^+ e^- \pi^0$ with \bar{P} ANDA in the TDA approach ,HK 8.9

Cut number definitions

- 1: No additional cuts, only event selection cuts involved
- 2 : Only one electron and one positron (2 tracks) with Very Loose probability.
- 3 : Only one electron and one positron (2 tracks) with Loose probability.
- 4 : Only one electron and one positron (2 tracks) with Tight probability.
- 5 : Only one electron and one positron (2 tracks) with Very Tight probability.
- 6 : Cut 5 and Cut 17
- 7: Cut 5 and Cut 18
- 8 : Cut 5 and Cut 19
- 9: At least one electron and one positron with Very Loose probability.
- 10 : At least one electron and one positron with Loose probability.
- 11 : At least one electron and one positron with Tight probability.
- 12 : At least one electron and one positron with Very Tight probability.
- 13 : Cut 12 and Cut 17
- 14 : Cut 12 and Cut 18
- 15 : Cut 12 and Cut 19
- 16 : Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than 10^-3
- 17: Cut 16 and Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than the confidence level of the fit with $\pi^+\pi^-\pi^0$ hypothesis
- 18: Cut 16 and Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than two times the confidence level of the fit with $\pi^+\pi^-\pi^0$ hypothesis
- 19: Cut 16 and Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than three times the confidence level of the fit with $\pi^+\pi^-\pi^0$ hypothesis
- 20: Cut 16 and Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than four times the confidence level of the fit with $\pi^+\pi^-\pi^0$ hypothe

Simulations for the measurement of $\bar{p}p \rightarrow e^+e^-\pi^0$ with \bar{P} ANDA in the TDA approach ,HK 8.9

Kinematic region cuts

	$W^2 = 5 \mathrm{GeV}^2$	$W^2 = 10 \mathrm{GeV}^2$
Simulation limits	$3.61 < q^2 < 5.29$	$5.76 < q^2 < 9.18$
Analysis limits	$3.8 < q^2 < 4.2$	$7.00 < q^2 < 8.00$

In addition: $\Delta_{{\cal T}_{\pi^0}} < 0.5\,{
m GeV}$

Simulations for the measurement of $\bar{p}p \rightarrow e^+e^-\pi^0$ with PANDA in the TDA approach ,HK 8.9

Results w/o Background

Selection cut

Only 2 tracks (+ and -) and very tight electrons (+ and -) per event

Kinematic region cut

$$3.8 < q^2 < 4.2$$
 at $W^2 = 5~{\rm GeV}^2$; 7.00 $< q^2 < 8.00$ at $W^2 = 10~{\rm GeV}^2$; $\Delta_{T_{\pi^0}} < 0.5~{\rm GeV}$

Simulation	N _{True w/o} Bg	$N_{Reconstructed w/o Bg}$	$N_{Corrected w/o Bg}$	$\epsilon_{\it rel}$ [%]
5 GeV - fw	72263 ± 269	30661 ± 175	72732 ± 433	0.6
5 GeV - bw	72405 ± 269	25386 ± 159	73164 ± 488	0.7
10 GeV - fw	1336 \pm 37	662 ± 26	1319 ± 51	3.9
10 GeV - bw	1313 ± 36	394 ± 20	1312 ± 66	5.0

Errors are only statistical

Simulations for the measurement of $\bar{p}p \rightarrow e^+e^-\pi^0$ with $\bar{P}ANDA$ in the TDA approach ,HK 8.9