Feasibility studies of proton electromagnetic form factors with the PANDA detector

Dmitry Khaneft

University of Mainz

PANDA collaboration meeting Darmstadt March 6, 2012

 $\bar{p}p \rightarrow e^+e^-(\pi^+\pi^-)$

Outline

- 1 Monte Carlo Simulations
- 2 CPU/HDD usage
- 3 Selection criteria
- 4 Results
- 5 Summary and Outlook

Monte Carlo Simulations

 $ar{p} p
ightarrow e^+e^-$ (November 11 release simulation)

• $p(\bar{p}) = 1.7, 3.3, 6.4[GeV/c] \rightarrow s = 5.4, 8.21, 13.8[GeV/c]^2$

•
$$G_E/G_M = 0, 1, 3$$

• $N = 10^6$

 $ar{p}
ho o e^+e^-$ (November 11 release "data")

•
$$p(\bar{p}) = 1.7, 3.3, 6.4[GeV/c] \rightarrow s = 5.4, 8.21, 13.8[GeV/c]^2$$

•
$$G_E/G_M = 0, 1, 3$$

•
$$N_{p(\bar{p})=1.7} = 1.1^6$$
, $N_{p(\bar{p})=3.3} = 6.4^4$, $N_{p(\bar{p})=6.4} = 2.0^3$
= $2fb^{-1}$

Monte Carlo Simulations

 $\bar{p}p \rightarrow \pi^+\pi^-$ (August 11 release) • $p(\bar{p}) = 1.7, 3.3 \, GeV/c$ • $N = 1.1 * 10^8$ $\bar{p}p \rightarrow \pi^+\pi^-$ (Trunk 14569) • $p(\bar{p}) = 1.7 \, GeV/c$ • $N = 3.9 * 10^7$ > 30% jobs crushed :(

CPU/HDD usage per $\bar{p}p \rightarrow e^+e^-$ event @HIMster cluster in Mainz

$p(ar{p})[GeV/c]$		1.7	3.3	6.4
	sim	0.47	0.58	0.65
	digi	0.29	0.29	0.32
CPU [s]	reco	2.08	2.05	1.91
	pid	1.19	1.26	1.31
	total	4.03	4.18	4.19
	sim	20.3	27.0	38.0
	digi	5.9	6.8	7.7
	reco	6.7	6.7	6.5
HDD [kB]	pid	1.4	1.4	1.5
	par	0.4	0.4	0.4
	total	34.7	42.3	54.1

CPU/HDD usage per $\bar{p}p \rightarrow \pi^+\pi^-$ event @HIMster cluster in Mainz

$p(ar{p})[GeV/c]$		1.7	3.3	6.4
	sim	0.41	0.36	0.31
	digi	0.31	0.25	0.21
CPU [s]	reco	2.08	1.77	1.31
	pid	1.25	1.02	0.62
	total	4.05	3.4	2.45
	sim	11.6	12.3	12.7
	digi	5.6	5.9	5.8
	reco	6.5	6.6	4.0
HDD [kB]	pid	1.9	1.9	1.2
	par	0.5	0.4	0.4
	total	26.0	27.1	24.1

Dmitry Khaneft (University of Mainz)

Selection criteria for e^+e^-

- The event must have only one positive and one negative particle after reconstruction
- For both the positive and the negative particle in the $\bar{p}p$ CM frame $\sqrt{s}/2 \lambda < E < \sqrt{s}/2 + \lambda$ where $\lambda = 0.2(\sqrt{s}/2)$
- For both the positive and the negative particle, 0.9 < E/p < 1.4 [(GeV)/(GeV/c)]
- For both the positive and the negative particle, cut on dE/dx_{STT}
- Both the positive and the negative particle must fire more then 5 crystals in the EMC

where E is the energy, p is the momentum and dE/dx_{STT} is the energy loss in STT of the reconstructed particle.

Efficiency correction $\bar{p}p \rightarrow e^+e^-, p(\bar{p}) = 1.7 \, GeV/c, \, G_E/G_M = 1$ $N = 1.1 * 10^6$ at $L = 2 \, fb^{-1}$

Dmitry Khaneft (University of Mainz)

Rosenbluth cross section $\frac{d\sigma}{d\cos\theta} = C[|G_M|^2(1+\cos^2\theta) + \frac{|G_E|^2}{\tau}(1-\cos^2\theta)]$ where $C = \frac{\pi\alpha^2(\hbar c)^2}{8m_p^2\sqrt{\tau(\tau-1)}}$, $\tau = q^2/4m_p^2$ and $\theta = angle(e^-\bar{p})$ in $\bar{p}p$ CM frame

Cross section $\bar{p}p \rightarrow e^+e^-, p(\bar{p}) = 1.7 \, GeV/c, \, G_E/G_M = 1$ $N = 1.1 * 10^6$ at $L = 2 \, fb^{-1}$

$cos(\theta_{CM})$ distribution for $G_E/G_M = 1$

Dmitry Khaneft (University of Mainz)

 $\bar{p}p \rightarrow e^+e^-(\pi^+\pi^-)$

March 6, 2012 11 / 20

G_E , G_M extracted from Rosenbluth fit

$$ar{p}p
ightarrow e^+e^-,\,G_E/G_M=1$$

 $N=1.1*10^6$ at $L=2fb^{-1}$

G_E/G_M extracted from Rosenbluth fit

$$ar{p}p
ightarrow e^+e^-,\,G_E/G_M=1$$

 $N=1.1*10^6$ at $L=2fb^{-1}$

 $\bar{p}p \rightarrow e^+e^-(\pi^+\pi^-)$

Extracted values of G_E , G_M and G_E/G_M

Dmitry Khaneft (University of Mainz)

 $\bar{p}p \rightarrow e^+e^-(\pi^+\pi^-)$

Number of e^+e^- and $\pi^+\pi^-$ pairs left after cuts

$p(ar{p})=1.7 GeV/c$	e^+e^-	e^+e^-	e^+e^-	$\pi^+\pi^-$ (aug11)
G_E/G_M	0	1	3	-
Monte Carlo	10 ⁶	10 ⁶	10 ⁶	$1.18 * 10^{8}$
Reconstructed	472959	491111	527317	46
Reconstructed, %	47%	49%	52%	$\ll 1\%$

Number of e^+e^- and $\pi^+\pi^-$ pairs left after cuts

$p(\bar{p}) = 3.3 GeV/c$	e^+e^-	e^+e^-	e^+e^-	$\pi^+\pi^-$ (aug11)
G_E/G_M	0	1	3	-
Monte Carlo	10 ⁶	10 ⁶	10 ⁶	$1.13 * 10^{8}$
Reconstructed	412848	428035	468135	34
Reconstructed, %	41%	42%	46%	$\ll 1\%$

Number of e^+e^- pairs left after cuts

$p(\bar{p}) = 6.4 GeV/c$	e^+e^-	e^+e^-	e^+e^-
G_E/G_M	0	1	3
Monte Carlo	10 ⁶	10 ⁶	10 ⁶
Reconstructed	314455	328279	380548
Reconstructed, %	31%	32%	38%

Probability

Summary

- Preliminary results for G_E and G_M
- Signal efficiency about 31-52%
- Background rejection factor about 10⁶

Outlook

- Bayesian PID
- Kinematic fitting

DIGT EXECUTION -I- PndStt: 48 points registered in this evo -I- FndFts: O points registered in this even] FairPrimaryGenerator: (Event 368) TINFO *** Break *** segmentation violation Generating stack trace... 0x00007f440d665bae in TGeoUnion::Contains Function run_sim_stt_evt() busy flag clear /** glibc detected *** /cluster/gsi/fairso _____ Backtrace; _____