$ar{p}p ightarrow e^+e^-$ and $ar{p}p ightarrow \pi^+\pi^-$ studies with PANDAroot

Dmitry Khaneft

GSI Darmstadt

September 5, 2011

Outline

- 2 Simulations
- 3 Selection criteria
- 4 Results of the simulations
- 5 Conclusion and Outlook

Feasibility studies for proton electromagnetic form-factors with the PANDA detector

Signal channel: $\bar{p}p \rightarrow e^+e^-$

In one-photon exchange approximation:

$$\frac{d\sigma}{d\cos\theta} = C[|G_M|^2(1+\cos^2\theta) + \frac{|G_E|^2}{\tau}(1-\cos^2\theta)]$$

where $C = \frac{\pi\alpha^2(\hbar c)^2}{8m_p^2\sqrt{\tau(\tau-1)}}$
 $\tau = q^2/m_p^2$
 $\theta = angle(e^-\bar{p})$ in $\bar{p}p$ CMS frame
 $p(p_1)$ $e^+(p_1')$

Background channel: $\bar{p}p \rightarrow \pi^+\pi^-$

$$rac{\sigma(ar{p}p
ightarrow\pi^+\pi^-)}{\sigma(ar{p}p
ightarrow e^+e^-)}\sim 10^6$$

Dmitry Khaneft (GSI Darmstadt)

Following channels were simulated

- $ar{p} p
 ightarrow e^+ e^-$ [events: 1000000]
- $\bar{p}p \rightarrow \pi^+\pi^-$ [events: 1000000]

Kinematic parameters

•
$$p(\bar{p}) = 4 \, GeV/c$$

•
$$-1 < \cos(heta_{CM}) < 1$$

- Both positive and negative particle 0.7 < E/p < 1.4
- Event must have only one positive and one negative particle after reconstruction
- Both positive and negative particle $\frac{dE}{dx_{STT}} > 5.8[GeV/g * cm]$
- Both positive and negative particle in CM frame $\sqrt{s}/2 \lambda < E < \sqrt{s}/2 + \lambda$ where $\lambda = (\sqrt{s}/2)/5$ For $P(\bar{p}) = 4 GeV/c$,

$$\sqrt{s}/2 = 1.54 \, \text{GeV}, \lambda = 0.31 \, \text{GeV}$$

Results from simulation using deposite energy from EMC and momentum provided by tracking

Energy loss in STT

Energy loss in MVD

Cherenkov angle provided by barrel DIRC

$\boldsymbol{\theta}$ angle of generated and reconstructed particles

$\cos\theta$ of generated and reconstructed particles in the CM frame

type of event	e^+e^-	$\pi^+\pi^-$
MC events	1000000	1000000
raw EMC + E/p cut	584309	715
cal EMC + E/p cut	568799	1088
raw EMC + all cuts	257228	0
cal EMC $+$ all cuts	277633	0

Signal (e^+e^-) efficiency 25 – 27% Background $(\pi^+\pi^-)$ suppression 100% for 10⁶ events $\mathsf{Conclusion}$

- $\bullet\,$ Developed set of cuts gives signal efficiency 25-27%
- Achived background rejection factor 10⁶

Outlook

- Is it possible to get background rejection factor 10^8 ?
- Larger stastics for background channel