

Symmetric Møller/Bhabha Luminosity Monitor for the OLYMPUS experiment

E. Goebel, Y. Ma, F. Maas, <u>R. Pérez-Benito</u>, W. Rehman, D. Rodriguez Pineiro HK - 61.3

Helmholtz-Institut Mainz Johannes Gutenberg-Universität

OLEMPUS On behalf the OLYMPUS Collaboration DPG Spring Meeting Mainz, 19th - 23rd of March 2011

Symmetric Møller/Bhabha Luminosity Monitor

Motivation

- Detector
- First results

Cycle of four states ij Repeat cycle many times

Change between electrons and positrons every day Change magnet polarity every 8 hours Left-right symmetry

e^{-/+} -proton unpolarized

elastic scattering

DPG Spring Meeting, Mainz, 19th – 23rd of March 2011, Roberto Pérez-Benito

Symmetric Møller/Bhabha Luminosity Monitor

 $\mathcal{L} = rac{R}{\sigma}$ Luminosity \mathcal{L} is the ratio of the measured scattering rate R and the effective cross section σ of a scattering reaction

Based on (symmetric) Møller (e-e-) and Bhabha (e+e-) scattering

Symmetric Møller/Bhabha Luminosity Monitor Based on (symmetric) Møller (e-e-) and Bhabha (e+e-) scattering

PbF₂ crystals used in the measurement in parity violation experiment at MAMI (A4) Two array of PbF₂ crystals with a small scattering angles located between toroidal coils and beam line quadrupole

March 2011, Roberto Pérez-Benito

DPG Spring Meeting, Mainz, 19th – 23rd of March 2011, Roberto Pérez-Benito

energy calibration center the beam on the center crystal

sum the energy from all crystals energy calibration for different beam types

energy resolution

First results

DPG Spring Meeting, Mainz, 19th – 23rd of March 2011, Roberto Pérez-Benito

other crosschecks

March 2011, Roberto Pérez-Benito

Summary

UNIVERSITÄT MAINZ

- Olympus Experiment set up and put into operation
- Initial data taken successfully
- Symmetric Møller/Bhabha working perfectly
- Huge amount of data need to be analyzed

THANKS

Parameter	
mittlerer Strahlstrom	$j_{Strahl} = 110 \mathrm{mA}$
Strahlenergie	$E_{Strahl} = 2 \text{ GeV}$
Targetdichte	$ ho_{Target} = 3 \cdot 10^{15} \mathrm{Atome} / \mathrm{cm}^2$
Luminosität	$L = 2 \cdot 10^{33} \frac{1}{cm^2 s}$
abgedeckter Winkelbereich	$20^\circ \le \theta_p \le 80^\circ$
ε	$0,\!35\!\le\varepsilon\le\!0,\!9$

Tabelle 2.1: In der Tabelle sind die wichtigsten Parameter des Olympus-Experiments aufgeführt.

Die gemessene Auflösung $\frac{\Delta E}{E}$ ist gegen die Strahlenergie aufgetragen. In den Fitparametern sind die Parameter $a = p_0, b = p_1$ und $c = p_2$ abzulesen. Die Parameter besitzen die Einheit $[a] = \% \cdot GeV, [b] = \% \cdot \sqrt{GeV}$ und [c] = %.

	Box I e^-	Box I e^+	Box II e^-	Box II e^+
a (elektronisches Rauschen)	$4,80 \pm 1,71$	$3,94{\pm}0,46$	$2,54{\pm}4,01$	$7,25{\pm}1,53$
b (statistische Schwankung)	$7,33\pm1,52$	$7,94{\pm}0,15$	$8,43\pm1,67$	$5,22\pm2,85$
c (Schauerfluktuation)	$1,62\pm 2,27$	$0\pm 1,14$	$1,13\pm 4,11$	$3,20\pm1,51$

Tabelle 6.3: Die Tabelle zeigt die Ergebnisse der Energieauflösung. Die Werte wurden den Abb. 6.3.4 und 6.3.5 entrommenender zum besserend Üfbersicht zusammengetragen. March 2011, Roberto Pérez-Benito

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Helmholtz-Institut Mainz

SYMB Rate versus Current

DPG Spring Meeting, Mainz, 19th – 23rd of March 2011, Roberto Pérez-Benito