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Frank Maas, Maŕıa del Carmen Mora, Cristina Morales, Roberto Pérez,
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Abstract

A Monte Carlo event generator for the process p̄p → π+π−, when both the proton target

and the antiproton beam are unpolarized, is described. The kinematic region covers the

antiproton momentum range from 0.79 GeV to 12.0 GeV, in the LAB frame. For the low

energy regime, the parametrization of the cross section is based on a Legendre polynomial fit

to data from the (antiproton beam) CERN 28 GeV proton synchroton. For the high energy

regime, the recent predictions by J. van de Wiele and S. Ong based on a Regge Theory

approach were used. The generator is a useful first tool to study pion production at PANDA.
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1 Introduction

The availability of a high-intensity antiproton beam up to 15 GeV at the FAIR facility and of

the PANDA detector offers unique possibilities for new investigations of the hadron structure

(see [1] for a review). Feasibility studies for the determination of the proton electromagnetic

form factors in the time-like region [2] with the PANDA detector have been already performed

through the annihilation process p̄p → l+l−, with l = e or µ, at several antiproton beam

energies [3]. At the lowest order, the underlying mechanism is assumed to be the exchange of

one virtual photon of four-momentum squared q2, although the sensitivity of the measurement

to higher exchanges was also investigated. The difficulty of the measurement is related to

the hadronic background, mostly annihilation into pions, which is estimated to be about

six orders of magnitude larger than the production of the lepton pair. The development of

efficient algorithms for pion rejection requires the use of realistic Monte Carlo event generators

for pion production, so the differences in the distributions of the relevant kinematic variables

can be used to tune the cuts needed to discriminate the signal from the background. In this

note we describe in detail a Monte Carlo event generator for the process p̄p → π+π−, when

both the proton target and the antiproton beam are unpolarized. The parametrization of

the input cross section is based both on data and on theoretical predictions, depending on

the considered kinematic range. In those regions of the phase space not covered by the data

or where the theoretical predictions are not expected to be reliable, an interpolated cross

section was first obtained using the available inputs. The continuous antiproton momentum

range from 0.79 GeV to 12.0 GeV in the LAB frame was fully covered in this way.

2 Kinematics

Throughout this note, the components pµ of a generic four-momentum p are labelled by the

integer index µ, which takes the values µ = 0, 1, 2, 3. The temporal componet p0 refers to

the energy E and the spatial components pi, with i = 1, 2, 3, to the 3-dimensional part p of

the four-momentum. Therefore, we write p = (E,p). The Minkowski metric with signature

g = diag(+,−,−,−) is used. With this choice, the square of the four-momentum becomes

p2 = pT g p = E2−p2, where the superscript T stands for matrix transpose. On-shell particles

therefore satisfy the relation p2 = E2 − p2 = m2, where m is the mass of the particle.

The kinematic description of the process p̄(p1) p(p2) → π+(p3) π−(p4) starts by choosing a

specific reference frame to which the particle four-momenta p1, p2, p3 and p4 are referred to.
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Two frames will be found to be useful in our analysis: the laboratory frame, or LAB frame

for short, and the p̄p center of mass frame, or CM frame for short.

The LAB frame is a coordinate system defined by choosing the positive z-axes aligned with

the antiproton beam momentum direction and having the proton target at rest. It is the

frame in which a fixed target experiment is done and therefore, where the detector is at

rest. Unprimed four-vectors will be used when we refer to the LAB frame. A picture of the

kinematics in the LAB frame is shown in Fig 1.

p1
p2

p4

p3

θ
z

Figure 1: Kinematics in the LAB frame.

In the LAB frame, initial state kinematics is completely specified by a single variable. For

convenience, we take this variable to be the antiproton beam momentum P . The incoming

proton and antiproton four-momenta are then given by:

p1 = (E, 0, 0, P ) , E =
√
M2 + P 2 (2.1)

p2 = (M, 0, 0, 0) , (2.2)

where M is the mass of the proton.

The Lorentz invariant s, defined as as the invariant mass square of the proton-antiproton

system, will be a useful quantity to solve the kinematics. Using initial state LAB frame

variables, it can be easily evaluated:

s = (p1 + p2)
2

= p21 + p22 + 2 p1 · p2
= M2 +M2 + 2EM

= 2M(M + E) . (2.3)

The CM frame is the frame where the total momentum is zero, so we have p′

1 + p′

2 = 0

Primed four-vectors will be used when we refer to the CM frame. The incoming proton and

antiproton collide, therefore, head to head. Again, we choose p′

1 to define the +z direction

of the coordinate system.
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The parametrization of the phase space of the outgoing pions, that is, the set of all four-

momenta p′3 and p′4 compatible with energy-momentum conservation, becomes simple in the

CM frame. Momentum conservation means that we also have p′

3 + p′

4 = 0, so the outgoing

pions are produced back to back in the CM frame. A picture of the kinematics in the CM

frame is shown in Fig 2.

p′1
p′2

p′4

p′3

θ∗

z

Figure 2: Kinematics in the CM frame.

In the CM frame, the evaluation of the Lorentz scalar s reduces to

s = (p′1 + p′2)
2 = (E ′

1 + E ′

2,p
′

1 + p′

2)
2 = (E ′

1 + E ′

2)
2 , (2.4)

and therefore s is called the center of mass energy squared.

Because for the two outgoing particles we have p′

3 + p′

4 = 0 and m3 = m4 = mπ, they are

produced with the same energy, so E ′

3 = E ′

4. Energy conservation then means that each of

them takes exactly half of the available energy in the CM frame:

E ′

3 = E ′

4 =

√
s

2
, (2.5)

which fixes the modulus of the momentum carried by each one of the pions:

|p′

3| = |p′

4| =
√

s

4
−m2

π . (2.6)

The only degrees of freedon that are still left to completely fix the kinematics of the final

state are the polar and azimuthal angles in the CM frame θ∗ and φ∗ of one of the two

pions. For convenience, we choose the negative charged pion as the reference. A more

natural parametrization of the phase space is yielded by taking, instead of θ∗, cos θ∗ as an

independent variable. cos θ∗ can take any value in the interval [−1, 1] and φ∗ and take any
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value in the interval [0, 2π]. The variables cos θ∗ and φ∗ completely parametrize the phase

space of the outgoing pions in the CM frame:

p′3 = (E ′

4,−p′

4) , p′

4 = |p′

4|(sin θ∗ cosφ∗, sin θ∗ sin φ∗, cos θ∗) (2.7)

p′4 = (E ′

4,p
′

4) (2.8)

The choice of the antiproton beam momentum direction to define z-axes in both the CM and

LAB frames implies that the transition from one to the other is given by a Lorentz boost

Λ along the momentum third component. The Lorentz boost then mixes the energy and

z-component of the a generic four-momentum k , while leaving the transverse components x

and y unchanged. The explicit implementation of the non-trivial part of the boost is given

by
(

k0

kz

)

=

(

γ
√

γ2 − 1
√

γ2 − 1 γ

)(

k0 ′

k′

z

)

, γ =

√
s

2M
. (2.9)

After boosting the two pion final state to the LAB frame, the resulting momenta p3 and p4

constitute the final event record:

p′3 → p3 = Λp′3

p′4 → p4 = Λp′4 . (2.10)

3 The cross section

Currently, there is no single description for the cross section which is valid in the full kinematic

range. For this reason, the parametrisation of the cross section was considered independently

in different kinematic regions according to the data and theoretical predictions available in

each case. Attending to the antiproton beam momentum in the LAB frame, three main

regions are distinguished: the low energy region, the transition region and the high energy

region.

The low energy region

In the antiproton momentum range 0.79 ≤ P ≤ 2.43 GeV, data from the CERN 28 GeV

proton synchrotron [4] were used to parametrise the cross section. The differential cross

section per unit of solid angle dσ/dΩ, where the solid angle element is defined in the usual

way as dΩ = d cos θ∗dφ∗, was measured for 20 incident momenta of the antiproton beam as

a function of cos θ∗, covering the angular range | cos θ∗| < 0.94 in a total of 48 bins.
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Following the authors, at each momentum the data were fitted with a Legendre polynomial

series:
dσ

dΩ
=

nmax
∑

n=0

an Pn(cos θ
∗) , (3.1)

where Pn is the Legendre polynomial of order n and the coeficients an are taken as the free

parameters of the fit. At the highest momentum, several orders of fit were examined. The

number of terms in the series was increased until there was no significant improvement in the

χ2 per degree of freedom, which then plateaued at a value closed to unity. For consistency,

the same number of terms was then used throughout the momentum range, even though the

cross section at lower momenta could be fitted adequately with fewer terms. Coeficients up

to a10 were used. The fitted cross section are plotted at each of the incident momenta in

Figs. 3, 4, 5, 6 and 7.

For reasons that will become clear later, at the highest antiproton momentum P = 2.43 GeV,

the cross section dσ/dt, where t is the Mandelstam variable t = −(p1 − p4)
2, was calculated

from the corresponding dσ/dΩ. The mapping from cos θ∗ to t can be obtained by expanding

the squared in the CM frame:

t = −(p′1 − p′4)
2

= −(p′ 2

1 + p′ 2

4 − 2p′1 · p′4)
= −(M2 +m2

π − 2E ′

1E
′

4 + 2|p′

1
||p′

4
| cos θ∗) , (3.2)

from which differentiation yields the relation between cos θ∗ and t-bins:

dt = 2|p′

1
||p′

4
|d(cos θ∗) . (3.3)

The relation between both cross sections is then given after an integrating in the azimuthal

variable φ∗:

dσ

dt
=

1

2|p′

1
||p′

4
|

dσ

d(cos θ∗)

=
1

2|p′

1
||p′

4
|

2π
∫

0

dφ∗
dσ

d(cos θ∗)dφ∗

=
π

|p′

1
||p′

4
|
dσ

dΩ
. (3.4)

At the highest momentum P = 2.43 GeV, the constant factor π/|p′

1
||p′

4
| takes the value 2.77

GeV−2. The corresponding cross section dσ/dt as a function of cos θ∗ is plotted in Fig. 8

5



The high energy region

In the antiproton momentum range 5.0 ≤ P ≤ 12.0 GeV, the very recent predictions by J. Van

de Wiele and S. Ong were used to parametrise the cross section [5]. Their Regge-inspired

phenomenological model, based on the trajectories exchanged in the t and u channels, is

expected to be valid at large values of the center of mass energy squared s. The comparison

between the differential cross sections predictions and the available data [6, 7, 8] is done to

determine the values of the few parameters of the model. Numerical values of dσ/dt were

provided by the authors at 15 incident momenta of the antiproton beam as a function of

cos θ∗ [9]. The lattice spacing in momentum was 0.5 GeV and the lattice spacing in cos θ∗

was 0.01.

The transition energy region

In the antiproton momentum range 2.43 < P < 5.0 GeV no data were available to parametrise

the cross section by an appropiate fit or to constrain the parameters of a phenomenological

model. The Regge theory approach used in the high energy region was extrapolated from

antiproton momentum 5.0 GeV down to 3.0 GeV, limit in which its predictions are not

expected to be valid any more. In a similar way, numerical values of dσ/dt were provided

by the authors at 4 incident momenta of the antiproton beam in this range, as a function of

cos θ∗ [9]. As in the previous case, lattice spacing in momentum was 0.5 GeV and the lattice

spacing in cos θ∗ was 0.01. The momentum range 2.43 < P < 3.0 GeV left a gap where no

data or theoretical predictions were available.

The cross section in the full (P, cos θ∗) space

According to the description just given, an input value for either dσ/dΩ or dσ/dt (from

data or from theoretical prediction) was available only at particular values of antiproton

beam momentum P and cos θ∗. In those points (P, cos θ∗) without an input cross section,

linear nearest neighbor interpolation was applied to extract a value. In the momentum range

2.43 < P < 3.0 GeV, the cross section dσ/dt at both extremes was used cosistently to do

the interpolation at momentum values in between. With this procedure, the value of the

cross section is available in the antiproton momentum range 0.79 ≤ P ≤ 12.0 GeV and

−1 ≤ cos θ∗ ≤ 1, where the P and cos θ∗ can take any value within the specified limits.
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4 Sampling the cross section

The differential cross section dσ/dΩ and dσ/dt as a function of cos θ∗ was the starting point

for the event generation in the antiproton momentum range 0.79 ≤ P ≤ 2.43 GeV and

2.43 < P ≤ 12.0 GeV, respectively. The event generatation proceeds with the simple “ac-

cept/reject” method. First, in the initialisation stage, an upper bound C for the cross section

at the user defined antiproron momentum P , is determined. Then, in the event loop stage,

the cross section is repeatedly sampled and tested as follows until the desired number of

events is reached: 1) a value for cos θ∗ is generated randomly in the user defined interval

[cos θ∗min, cos θ
∗

max] with flat probability density, and the value is used to calculate the cross

section; 2) a second random variable y is generated uniformly in the range [0, C]; 3) if y is

larger than the value of the cross section, the event is discarded and the cross section resam-

pled (step 1); otherwise 4) the event is accepted, a value φ∗ is uniformly generated in the

range [0, 2π] and 5) the event is built by calculating the two pion final state four-momenta

out of the generated cos θ∗ and φ∗ according to the description given in Section 2.

The pseudo ramdom number generator used to produced uniformly distributed random num-

bers in the interval [0, 1) was RANLUX [10], whose source code [11] was added to our program.

Typical generation times were found to be of the order of 30 µ sec per accepted event.

5 Routines in the generator

A brief description of all routines used by the generator is provided here.

• mz_pp_to_pipi_vandewi_init: it checks if all user defined parameters have their val-

ues in the allowed ranges, otherwise it stopps the job; it determines the kinematic region

corresponding to the input antiproton momentum as well as the parametrization of the

cross section to be used and determines whether or not interpolation of the cross section

between two momentum values is needed; it initialises the random number generator

and prints out to the log file basic kinematic information.

• mz_pp_to_pipi_get_p_lattice_site: it determines whether or not the input antipro-

ton momentum corresponds to one of sites of the momentum lattice. In the negative

case, it determines the two sites on the momentum lattice which will be used to inter-

polate the cross section.
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• mz_pp_to_pipi_get_costheta_lattice_site: In both the transition and high energy

region, it determines whether or not the generated cos θ∗ corresponds to one of sites of

the cos θ∗ lattice. In the negative case, it determines the two sites on the cos θ∗ lattice

which will be used to interpolate the cross section.

• mz_pp_to_pipi_vandewi_maximum_sigma: it determines an upper bound to the cross

section for the input antiproton momentum in the full cos θ∗ range.

• mz_pp_to_pipi_vandewi_sigma_legendre: in the low energy region, it returns the

value of dσ/dΩ at the i-th site on the momentum lattice for the generated cos θ∗.

• mz_pp_to_pipi_vandewi_sigma: it returns the value of the cross section for the input

antiproton momentum at the generated cos θ∗, performing all momentum and cos θ∗

interpolations whenever is necessary. If the antiproton momentum belongs to the low

energy region, it returns the value dσ/dΩ, otherwise it returns the value dσ/dt.

• mz_pp_to_pipi_vandewi_event: it generates one physical event by returning the four-

momenta of the two charged pions in the final state, in the LAB frame.

• mzvmod2: it returns the square of an input four-vector.

• mz_legendre_polynomial: it returns the value of the n-order Legendre polynomial at

any −1 ≤ x < 1, up to order 10.

• mz_linear_interpolation: it interpolates a linear function y = ax + b between two

points (x1, y1) and (x2, y2) and returns its value at the input x.

• mzrnd: it returns a random number generated with flat probability density in the in

the interval [a, b] using RANLUX.

• mzboost: it boosts the four momenta of the two pions in the final state from the CM

frame to the LAB frame.

6 Interface to PandaRoot

The p̄p → π+π− event generator has been successfully interfaced to PandaRoot, so the output

is directly streamed to the simulation framework during execution time, event by event. All

source files can be found in /pandaroot/pgenerators/EMFFgenerators. The files PndPiP-

iGenerator.* contain the interface class, which is responsible of the communication between
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the original event generator source code and PandaRoot. The class receives particle momenta

from the event generator and pass this information efficiently to PandaRoot, which then proc-

ceds with the simulation stage. Sucessful compilation of the generator within the simulation

framework was achieved by aplying the appropiate modifications to the CMakeLists.txt files.

7 User guide

The set of parameters needed by the generator are suplied and passed to the program in the

simulation macro, where the generator is called. The user has to provide the following data:

• P : antiproton beam momentum in the lab frame, in GeV. The allowed range is 0.79 ≤
P ≤ 12.0 GeV. Setting a value below the PANDA threshold 0.79 ≤ P < 1.5 GeV is

possible, but a warning message will be printed out to the log file.

• seed: the initialisation seed fixing the state in RANLUX, an integer in the range [1, 231).

• cos θ∗min and cos θ∗max: minimum and maximum values, respectively, of cos θ∗. The

allowed range is −1 ≤ cos θ∗min < cos θ∗max ≤ 1. However, for antiproton momentum

in the interval 0.79 < P < 2.43 GeV (i.e. the low energy region), it is recomended

to limit the angular range to −0.94 < cos θ∗min < cos θ∗max < 0.94, as in this range

the cross section in the very forward or very backward region may be affected by large

extrapolations resulting from extending the fits results beyond the measurements range.

Exceeding these limits is possible, but warning message will be printed out to the log

file.

As already mentioned, the program checks that all user defined parameters take their value

in the allowed ranges, stopping the job when this condition is not satisfied. An example

simulation macro is given in Appendix A

8 Examples

The generator has been examined carefully in order to check that the resulting distributions

at the Monte Carlo true level agree with the expectations. Figs. 9, 10 and 11 show example

distributions of cos θ∗ for generated events in the low, transition and high energy regimes,

respectively. In all cases, the resulting distribution follows the corresponding cross section
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dσ/dΩ or dσ/dt. The kinematics of the two body decay in the p̄p CM frame becomes

manifest in Fig. 12, where the production of the two outgoing pions in a “back to back”

configuration with the expected energy
√
s/2 and flat azymuthal distribution is clearly shown.

The distribution of a few variables after boosting the events to the LAB frame is shown

Fig. 13. The energy spectrum of the negative charged pion in the LAB frame mimics the

distribution of cos θ∗ in the CM frame, as corresponds to the linear mapping between these

two variables induced by the boost along the momentum third component. The azimuthal

flat distribution is preserved by the boost, as expected, whereas the whole sample is boosted

in the forward direction, as the cos θ distribution shows.

9 Summary

A Monte Carlo event generator which simulates the π+π− production in p̄p annihilations,

when both the proton target and the antiproton beam are unpolarized, has been described.

The cross section used for the event generation was parametrised in terms of a Legendre

polynomial series fitted to data from the CERN 28 GeV proton synchroton in the low energy

regime, whereas in the high energy regime the recent theoretical predictions by J. van de

Wiele and S. Ong were used. An interpolated cross section was extracted in those (P, cos θ∗)

points not covered by the measurements or by the available theoretical predictions. The

antiproton momentum range in the LAB frame extends from 0.79 GeV to 12.0 GeV. For

each momentum, the full range −1 ≤ cos θ ≤ 1 was covered. The generator can be used

as a useful tool to study pion production at PANDA, both for the development of efficient

algorithms for pion rejection and for the measurement of π+π− production cross section in

proton-antiproton annihilations.
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A An example simulation macro

For the convenience of the user, we provide in this appendix the example simulation macro

Simulation_Example.C which calls the pion generator. The reader is assumed to have some

familiarity in doing simulations with PANDA ROOT, so only the relevant parts related to

the monte carlo generator are explicitly shown. The parameters needed by the generator, de-

scribed in Section 7, are passed through the arguments of the function Simulation_Example

in the macro.

Simulation_Example( Double_t P=5.0,

Int_t seed=1,

Double_t cos_theta_min = -0.8,

Double_t cos_theta_max = 0.8 ){

/**

* PARAMETERS:

*

* P: pbar momentum LAB frame [GeV]

* seed: RANLUX seed

* cos_theta_min: minimum cos(theta*)

* cos_theta_max: maximum cos(theta*)

*

* Ranges:

*

* 0.79 <= P <= 12.0 GeV

* 1 <= seed < 2^31

* -1 <= cos_theta_min < cos_theta_max <= 1

*/

· · ·
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// Create and Set Event Generator

//-------------------------------

FairPrimaryGenerator* primGen = new FairPrimaryGenerator();

fRun->SetGenerator(primGen);

PndPiPiGenerator* boxGen = new PndPiPiGenerator();

boxGen->SetBeamMom(P);

boxGen->SetSeed(seed);

boxGen->SetCosThetaMin(cos_theta_min);

boxGen->SetCosThetaMax(cos_theta_max);

primGen->AddGenerator(boxGen);

· · ·

exit(0);

}
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Figure 3: Differential cross section per unit of solid angle as a function of cos θ∗ in the p̄p

center of mass frame, for p̄ momentum in the lab frame from 0.79 GeV to 1.09 GeV. In each

cos θ∗ bin, the plotted value is the integrated cross section in the bin divided by the bin width

and by the factor 2π.
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Figure 4: Differential cross section per unit of solid angle as a function of cos θ∗ in the p̄p

center of mass frame, for p̄ momentum in the lab frame from 1.16 GeV to 1.36 GeV. In each

cos θ∗ bin, the plotted value is the integrated cross section in the bin divided by the bin width

and by the factor 2π.
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Figure 5: Differential cross section per unit of solid angle as a function of cos θ∗ in the p̄p

center of mass frame, for p̄ momentum in the lab frame from 1.43 GeV to 1.71 GeV. In each

cos θ∗ bin, the plotted value is the integrated cross section in the bin divided by the bin width

and by the factor 2π.
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Figure 6: Differential cross section per unit of solid angle as a function of cos θ∗ in the p̄p

center of mass frame, for p̄ momentum in the lab frame from 1.81 GeV to 2.01 GeV. In each

cos θ∗ bin, the plotted value is the integrated cross section in the bin divided by the bin width

and by the factor 2π.
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Figure 7: Differential cross section per unit of solid angle as a function of cos θ∗ in the p̄p

center of mass frame, for p̄ momentum in the lab frame from 2.12 GeV to 2.43 GeV. In each

cos θ∗ bin, the plotted value is the integrated cross section in the bin divided by the bin width

and by the factor 2π.
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Figure 8: Differential cross section per unit of the Mandelstam variable t as a function of

cos θ∗ in the p̄p center of mass frame, for p̄ momentum in the lab frame 2.43 GeV.
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Figure 9: Distribution of cos θ∗ in a sample of 105 generated events for p̄ momentum in

the lab frame 1.91 GeV in the range −94 < cos θ∗ < 0.94 (top), in comparison to the cross

section dσ/dΩ for the same momentum as a function of cos θ∗ (down).
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Figure 10: Distribution of cos θ∗ in a sample of 105 generated events for p̄ momentum in

the lab frame 2.50 GeV and 2.95 GeV in the range −94 < cos θ∗ < 0.94 (top), in comparison

to the cross section dσ/dt for p̄ momentum 2.43 GeV and 3.0 GeV used for the interpolation

as a function of cos θ∗ (down).
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Figure 11: Distribution of cos θ∗ in a sample of 105 generated events for p̄ momentum

in the lab frame 5.0 GeV (or center of mass energy square s = 11.3 GeV 2) in the range

−1 < cos θ∗ < 1 (top), in comparison to the cross section dσ/dt for the same momentum as

a function of cos θ∗ [5] (down).
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Figure 12: The distribution of the energy and the azymuthal angle of the negative charged

pions (top) and the angle between the positive and the negative charged pion (down) in the

p̄p CM frame, in a sample of 105 generated events for p̄ momentum 1.91 GeV.
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Figure 13: The distribution of the energy and the azymuthal angle (top) and cos θ (down)

of the negative charged pion in the LAB frame, in a sample of 105 generated events for p̄

momentum 1.91 GeV.
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