

Outline

- ▶ 1. Introduction
- ▶ 2. Setup of the APD measurement
- ▶ 3. Results
- ▶ 4. Analysis
- ▶ 5. Summary and the future plan

► EMC of PANDA

- three components
- ► scintillator: PWO II, 22X₀
- Backward endcap
 - ▶ 0.8m in diameter:
 - located at 1m upstream from target;
 - ▶ angular coverage: $151.4^{\circ} \sim 164.7^{\circ}$.
- Readout
 - two Large Area APDs (LAAPDs) per crystal;
 - \triangleright active area: $7 \times 14mm^2$.

 1 TDR for $\bar{P}ANDA$ EMC(2008)

- Avalanche Photodiode
 - ▶ thickness: $\sim 200 \mu m$;
 - ▶ high quantum efficiency: $70 \sim 80\%$ at λ of maximum emission intensity of PWO.
- ► The avalanche process

Figure 1-1 Schematic diagram of avalanche process

²Technical information SD-28 HAMAMATSU

e bineiq .

► Principle of operation of an APD

Figure 2-1 Cross section of near infrared APD

KAPDC0012EA 3

Large Area APD (Avalanche Photodiode)

5/14

³Technical information SD-28 HAMAMATSU

- ▶ Low noise/low power(LNP) charge sensitive preamplifier
 - ▶ low energy threshold of EMC requires an extreme low noise;
 - ▶ low power consumption from the front-end electronics.

- Three different cables from preamplifier;
- ► The space constraint in the backward endcap EMC;
- The signals from two APDs of one crystal will be summed up after ASIC:
- If we can find two APDs with the same Gain-Voltage characteristics, we can send the two signal from two APDs into one preamplifier

Setup of the APD Measurement

- ► The instrument for APD measurement
 - easy to mount the APD and preamplifier;
 - well ground and light tight;
 - fixed the LED pulser.

► Signal Measurement Oscilloscape and shaping amplifier

Setup of the APD Measurement

- ▶ Noise measurement: without LED pulser
- ▶ Signal measurement: with LED pulser
- One preamplifier for one APD
- One preamplifier for two APDs

Results

- ► The noise measurement
 - without LED pulser;
 - ▶ the HV of APD is from 50V to 240V stepped by 10V.

Results

- ► Signal-to-noise(SNR)
 - one preamplifier for one APD

- ► Signal-to-noise(SNR)
 - one preamplifier for two APDs

Analysis

- ▶ the noise is decreased with the high voltage;
- comparing the noise from one APD and two APDs:

$$N_{two} = \sqrt{2} \times N_{one}$$

 for two APDs on 6 μs shaping time, when HV>200V, the noise is increased;

Analysis

▶ the SNRs are not so much different with different shaping time;

▶ the SNR of two APDs on 6μ s is smaller than it on 3μ s when the HV is bigger than 200V, which is due to the noise increasing.

Summary and the future plan

- the difference of nois from one APD and two APDs are measured;
- comparing the SNR of two measurement methods on different shaping time.

 measure FWHM with an ADC(MCA) and compare the energy resolution with one APD and two APDs;

improve the measurement instrument.

D. Lin