Paul Larin Supervisors: Frank Maas Cristina Morales

Motivatio

Theoretics Basics

Form Factors Space-Lik

Region Time-Like Region

Designs FENICE

BESIII

T D

Appendix

Time-Like Form Factors of the Neutron @ BESIII

Vortrag im Arbeitsgruppenseminar

Paul Larin Supervisors: Frank Maas Cristina Morales

Helmholtz-Institut Mainz Johannes-Gutenberg Universität Mainz

21. Juni 2012

Paul Larin Supervisors: Frank Maas Cristina Morales

Form

Time-Like

Outline

- Motivation
- 2 Theoretical Basics
- 3 Experimental Designs
- 4 Analysis
- **5** To Do
- 6 Appendix

Annendiy

Motivation and Goals

Motivation:

- Time-like form factors of the nucleon poorly measured
- For neutron only 1(!) serious measurement (FENICE) with very poor statistics (74 events)
- pQCD prediction $|G_M^n|=\frac{1}{2}|G_M^p|$, but from data $|G_M^n|=\frac{3}{2}|G_M^p|\to$ pysical explanation?
- Babar measured unexpected behavior of the proton form factors at threshold → behavior at threshold for neutron from factor?

Goals:

- Extraction of the cross section for $e^+e^- o n\overline{n}$
- Extraction of $|G_M^n|$ and $|G_E^n|$, at least the ratio $R = |G_M^n|/|G_E^n|$
- Investigation of the behavior at threshold

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivatio

Theoretical Basics

Form Factors Space-Like Region Time-Like Region

Designs FENICE RESIII

A -- I---i-

To D

Appenaix

Theoretical Basics

- Form Factors
- Space-Like Region
- Time-Like Region

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivat

Theoreti

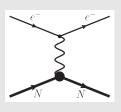
Form Factors Space-L Region

Space-Like Region Time-Like Region

Designs FENICE

A -- l -- i

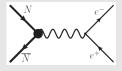
To D


Appendix

Electromagnetic Form Factors of the Nucleon

- Electromagnetic form factors are the most direct link to the structure of the nucleon in therms of its constituents
- Describe the coupling of a photon to the distribution of charges and currents in the nucleon (Born approximation)
- Can be real (space-like) or complex (time-like) functions

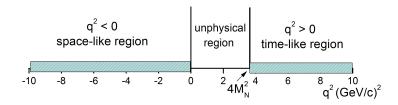
Space-Like $(q^2 < 0)$ Elastic eN-Scattering:


$$e^- + N \rightarrow e^- + N$$

Time-Like $(q^2 > 0)$

Annihilation:

$$e^- + e^+ \rightarrow N + \overline{N}$$



Paul Larin Supervisors: Frank Maas Cristina Morales

Form Factors

Space-Like

Electromagnetic Form Factors of the Nucleon

Space-Like $(q^2 < 0)$

- Real
- Rosenbluth cross section
- No single spin observables
- Double spin observables

Time-Like $(q^2 > 0)$

- Complex, imaginary part: polarisation
- Rosenbluth cross section
- Single spin observables
- Double spin observables

Space-Like Region

• Elastic scattering: $e^- + N \rightarrow e^- + N$:

Vector current:

$$\langle N(p_2)|J_{em}^{\mu}|N(p_1)\rangle=\overline{U}(p_2)\left[F_1(Q^2)\gamma^{\mu}+F_2(Q^2)\frac{i\sigma^{\mu\nu}}{2M}q_{\nu}\right]U(p_1)$$

• Dirac & Pauli form factors F_1 , F_2 :

$$F_{1,p}(0) = 1;$$
 $F_{2,p}(0) = \mu_p;$ $F_{1,n}(0) = 0;$ $F_{2,n}(0) = \mu_n$

Sachs form factors:

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$
 $G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2)$

Appendi

Space-Like Region

Approaches:

Rosenbluth cross section:

Obtain form factors of unpolarised cross section

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Mott}} \frac{\tau}{\epsilon(1+\tau)} \left[G_{\mathrm{M}}^2(Q^2) + \frac{\epsilon}{\tau} G_{\mathrm{E}}^2(Q^2) \right] \\ Q^2 &= -q^2 \qquad \tau = Q^2/4 M_N^2 \qquad \frac{1}{\epsilon} = 1 + 2(1+\tau) \tan^2\left(\frac{\theta}{2}\right) \end{split}$$

Polarisation transfer:

Measure outgoing nucleon polarisation

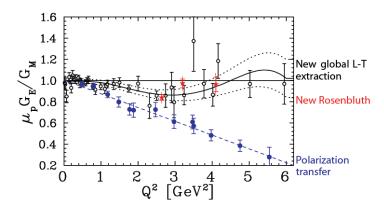
$$\frac{G_E(Q^2)}{G_M(Q^2)} = -\frac{E+E'}{2M_N} \tan^2 \left(\frac{\theta^*}{2}\right) \frac{P_t}{P_l}$$

Paul Larin Supervisors: Frank Maas Cristina Morales

Motiva

Theoretic Basics Form Factors

Space-Like Region Time-Like

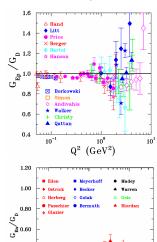

Experime Designs FENICE

BESIII

To D

Appendio

Space-Like Electromagnetic Form Factors



- High statistics for space-like region
- Discrepancy between different methods could be explained with two-photon exchange and radiative corrections

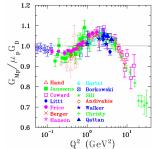
Paul Larin Supervisors: Frank Maas Cristina Morales

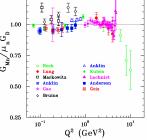
Space-Like Region

Space-Like Electromagnetic Form Factors

0.40

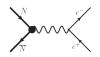
0.20


0.00


10-1

10¹

in GeV²



Time-Like Region

• Annihilation $e^+ + e^- \to N + \overline{N}$: $p + \overline{p} \to e^+ + e^-$:

• Vector current $\langle N(p_2)|J^{\mu}_{em}|N(p_1)\rangle \to \text{crossing symmetry}$:

$$\langle 0|J_{em}^{\mu}|N(p_1)\overline{N}(p_2)\rangle = \overline{U}(p_2)\left[F_1(q^2)\gamma^{\mu} - F_2(q^2)\frac{i\sigma^{\mu\nu}}{2M}q_{\nu}\right]U(p_1)$$

$$G_F(q^2) = F_1(q^2) + F_2(q^2)$$

$$G_M(q^2) = F_1(q^2) + \tau F_2(q^2)$$

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= \frac{\alpha^2\beta C}{aq^2} \left[\frac{1}{\tau} G_E^2(q^2) \sin^2(\theta_N^{cm}) + G_M^2(q^2) (1 + \cos^2(\theta_N^{cm})) \right] \\ \beta &= \sqrt{1 - 4m_n^2/m^2} \quad C &= \frac{y}{(1 - e^{-y})} \quad y = \frac{\pi \alpha m_n}{\beta m} \end{split}$$

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivati

Theoretical Basics Form Factors Space-Like Region Time-Like

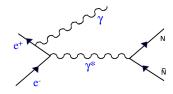
Region Experim Designs

FENICE BESIII

Analys

10 D

Time-Like Region - Characteristics


- Form factors are complex functions of q^2
 - determination of relative phase by measuring polarisation of outgoing N
- $G_E(4M_N^2) = G_M(4M_N^2)$ (at threshold), if F_1 and F_2 analytic
- $G_E^n(q^2)$ negligible at large q^2
- At large $q^2 o G(q^2) = G(-q^2)$ (QCD, analycity)
- According to pQCD simplest prediction:

$$\left| \frac{G_M^n}{G_M^p} \right|^2 pprox \left(\frac{q_d}{q_u} \right)^2 = \frac{1}{4}$$

In models representing the nucleon in terms of valence quarks it should be $G_M^n > G_M^\rho$

Time-Like Electromagnetic Form Factors

 Another approach: obtain form factors using ISR technique

Initial State Radiation (ISR) method

• $\sigma(e^+e^- \to N\overline{N})$ can be measured from threshold $(q^2 = 4m_N^2)$ to full cm-energy \sqrt{s} by studying the ISR process $\sigma(e^+e^- \to N\overline{N} + \gamma)$

$$\frac{d^2\sigma_{e^+e^-\to N\overline{N}+\gamma}(m)}{dm\;dcos\theta_{\gamma}^*} = \frac{2m}{s}W(s,x,\theta_{\gamma}^*)\sigma_{N\overline{N}}(m)$$

• with: $m=N\overline{N}$ invariant mass, $x=\frac{2E_{\gamma}^{*}}{\sqrt{s}}=1-\frac{m^{2}}{s}$, E_{γ}^{*} and θ_{γ}^{*} are the ISR photon energy and polar angle in $e^{+}e^{-}$ cm frame

Paul Larin Supervisors: Frank Maas Cristina Morales

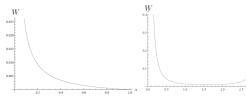
Motivat

Theoretical Basics Form Factors Space-Like Region

Region Experime Designs

FENICE BESIII

Analy


To D

Appendix

Time-Like Electromagnetic Form Factors

• W is the probability of ISR photon emission for $heta_{\gamma}^* >> \frac{m_e}{\sqrt{s}}$:

$$W(s, x, \theta_{\gamma}^*) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2(\theta_{\gamma}^*)} - \frac{x^2}{2} \right)$$

• The cross section for $e^+e^- \to N\overline{N}$ process is given by:

$$\sigma_{N\overline{N}}(m) = \frac{4\pi\alpha^2\beta C}{3m^2} \left[\frac{2m_N^2}{m^2} G_E^2(m) + G_M^2(m) \right]$$

- Two possibilities using ISR:
 - Tagged analysis: ISR photon detected, information about photon can be used for kinematic cuts
 - Untagged analysis: ISR photon not detected, angular distribution of ISR photon can be used for background suppression

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivat

Theoretical Basics Form Factors Space-Like Region

Time-Like Region

Designs FENICE BESIII

Analys

.

Time-Like Electromagnetic Form Factors

2γ -exchange in timelike region:

Matrix element beyond Born approximation:

$$M = \frac{-ie^2}{q^2} \overline{u}(k_1) \gamma_{\mu} v(k_2) \times \overline{v}(p_2) \left[\tilde{G}_M \gamma_{\mu} - \tilde{F}_2 \frac{P^{\mu}}{m} + \tilde{F}_3 \frac{P^{\mu}}{m^2} \mathcal{K} \right] u(p_1)$$

• Cross section with 2γ -exchange:

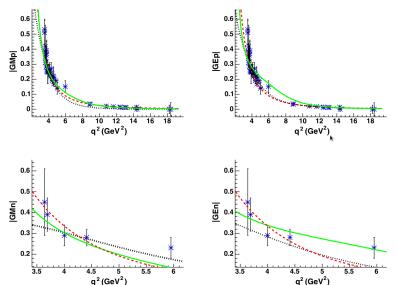
$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= \frac{\alpha^2 \beta C}{aq^2} \left[\frac{1}{\tau} G_E^2(q^2) \sin^2(\theta^*) + G_M^2(q^2) (1 + \cos^2(\theta^*)) \right. \\ &+ 2 \Re \left[G_M \delta \tilde{G}_M \right] \left(1 + \cos^2(\theta^*) \right) + \frac{2}{\tau} \Re \left[G_E \delta \tilde{G}_M \right] \sin^2(\theta^*) \\ &+ 2 \left[\Re \left[G_M \tilde{F}_3^* \right] - \frac{1}{\tau} \Re \left[G_E \tilde{F}_3^* \right] \right] \sqrt{\tau(\tau - 1)} \cos(\theta^*) \sin^2(\theta^*) \right] \end{split}$$

• 2γ -contribution can be measured by analysing the asymmetry in angular distribution in experiments with superior statistics, $\delta_{2\gamma} < 1\%$

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivat

Theoretical Basics Form Factors Space-Like Region Time-Like Region


Experimen Designs FENICE

Analysis

To D

Appendix

Time-Like Electromagnetic Form Factors

Results and predictions for time-like form factors. Dashed line: pQCD-inspired, dotted line: lachello's parametrisation, solid line: Lomon Model

Paul Larin Supervisors: Frank Maas Cristina Morales

IVIOLIVALI

Theoretic

Form Factors

Space-Like Region Time-Like

Experimental Designs

FENICE

Analysis

To D

Appendix

Experimental Designs

- FENICE
- BESIII

Paul Larin Supervisors: Frank Maas Cristina Morales

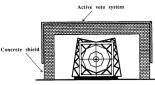
Motivat

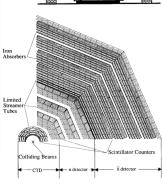
Form Factors
Space-Like Region
Time-Like

Designs

BESIII

Analys


Appendi


FENICE - ADONE

- 1. measurement of the time-like form factors of the neutron (1991-1993)
- Prozess: $e^+e^- \to n\overline{n}$, $E_{cm} = (1.88, 1.90 2.44, 3.10)$ GeV

FENICE-Detector:

- Limited streamer tubes as tracking devices
- Scintillation counters as timing and triggering devices
- Thin iron plates as distributed converters where \overline{n} annihilate
- E_{cm}: 1.5 − 3.1 GeV
- Luminosity: 1.2·10²⁹cm⁻²s⁻¹ (threshold)
- Luminosity: 0.6·10²⁹cm⁻²s⁻¹ (3.1 GeV)

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivat

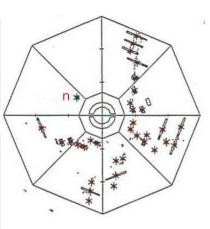
Theoretical Basics Form Factors Space-Like Region Time-Like Region

Designs FENICE

BESII

Analys

Appendi


FENICE - Event-Selection

Star-topology:

- Many charged tracks, mainly pions, pointing to the n
 annihilation vertex
- Electromagnetic showers (π^0) pointing to the same vertex

Event-selection:

- Identification of \overline{n} by star-topology
- No indentification of n (15% efficiency)
- Consistency check by looking at TOF
- No other charged/neutral particles in event

Example of a $n\overline{n}$ event

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivat

Theoretical Basics Form Factors Space-Like Region Time-Like Region

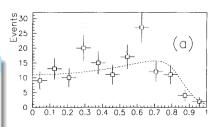
Experimen

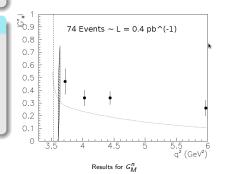
FENICE BESIII

Analys

To D

Two cases:


- $|G_E| = |G_M|$: \rightarrow flat angular distributuion
- $|G_E| = 0$: $\rightarrow (1 + \cos^2)$ angular distributuion


Fit to data:

$$A \cdot (1 + \cos^2 \theta) + B \cdot \sin^2 \theta$$

- A and B are free parameters, related to $|G_M|$ and $|G_E|$
- Best fit obtained with case 2
- Shaded area \rightarrow both cases

FENICE - Results

BEPCII - Beijing

@ BESIII
Paul Larin
Supervisors:
Frank Maas
Cristina
Morales

Time-Like Form Factors of

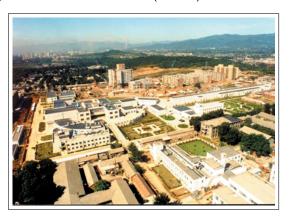
the Neutron

Motivati

Theoretic

Form Factors Space-Lik

Space-Like Region Time-Like Region


Designs FENICE

BESIII

To D

Appendix

The Beijing Electron-Positron Collider II (BEPCII)

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivati

Theoretic Basics

Form Factors Space-Like Region Time-Like Region

Experimen Designs FENICE

BESIII

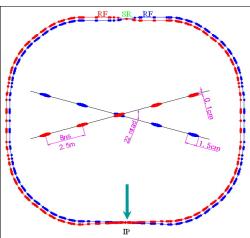
To Do

Appendi

BEPCII - Beijing

• Circumference: 237 m

• Beam energy: 1.0-2.3 GeV


• Luminosity: 10³³ cm⁻¹s⁻¹

• E_{cm}: 3.770 GeV

• Energy spread: 5.16·10⁻⁴

• Current: 0.91 A

The BESIII Detector

SC magnet, 1T Magnet yoke **RPC: 9 layers** TOF, σ_T (ps) = 100 ps Barrel 110 ps Endcap Be beam pipe MDC, $\sigma_{XY} (\mu m) = 130$ $\triangle P/P = 0.5 \% (1 \text{ GeV})$ CsI(TI) calorimeter, $\sigma_{dE/dx} = 6-7 \%$ $\triangle E/\sqrt{E} = 2.5 \% (1 \text{ GeV})$ $\sigma_z, \phi(cm) = 0.5cm/\sqrt{E}$

Paul Larin Supervisors: Frank Maas Cristina Morales

Time-Like Form

the Neutron @ RESIII

Motivat

Theoretical Basics Form Factors Space-Like Region Time-Like

Designs

BESIII

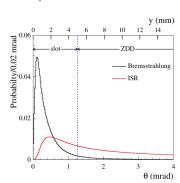
T D

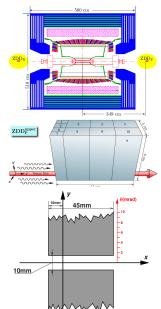
Append

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivat

Theoretical Basics Form Factors Space-Like Region Time-Like


Experiment Designs FENICE BESIII


Analysis

Λ .

New Zero-Degree-Detector

- ZDD: small calorimeter (scintillator fibres)
- angular distribution of ISR- γ peaks at small angles
- without ZDD only 20% of ISR- γ hit main detector
- new ZDD at least doubles acceptance

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivatio

Theoretica

Basics

Form

Space-Like Region

Time-Like Region

Designs

FENICE BESIII

Analysis

To Do

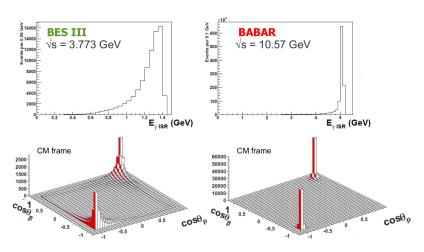
Appendix

Analysis

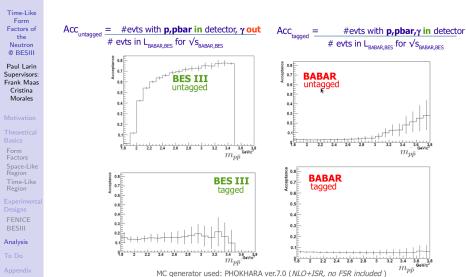
Paul Larin Supervisors: Frank Maas Cristina Morales

Motivat

Theoretical Basics Form Factors Space-Like Region Time-Like Region


Experiment Designs FENICE BESIII

Analysis


To D

Appendi

ISR Geometry

 $\mathsf{E}_{\gamma,\mathit{ISR}}$ distribution and θ -distribution for $p\ \overline{p}$ at BESIII, Babar

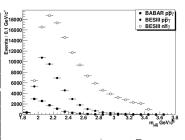
Acceptance in tagged and untagged case

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivat

Theoretica Basics Form Factors Space-Like Region Time-Like Region

Experimer Designs FENICE BESIII


Analysis

10 D

Appendix

• Phokhara standalone (ISR, NLO, no FSR)

\sqrt{s}	3.77 GeV
$\sigma_{\mathit{ISR},NLO}$	1.019·10 ^{−3} (nb)
L	10 (fb ⁻¹)
N_{gen}	198153
measurement	tagged+untagged
cuts	$21.56^{\circ} < \theta_{n\overline{n}} < 158.43^{\circ}$
	$0^{\circ} < heta_{\gamma,\mathit{ISR}} < 180^{\circ}$
$N_{exp}(utag)$	128799(28767)
	•

Expected events for e $^+e^- \to N\overline{N}\gamma$

Form
Factors of
the
Neutron
@ BESIII

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivat

Theoretica Basics Form Factors Space-Lik Region Time-Like

Experimen Designs FENICE BESIII

Analysis

To Do

Analysis Strategy

I will start with a tagged analysis, then I will do an untagged one

Particle identification in my channel:

- Select events with no charged tracks originating in the interaction region
- ISR photon: highest energetic cluster at EMC which not an \overline{n}
- ullet \overline{n} annihilation signature more identificable than n shower
- Separation of \overline{n} and photon shower (star-topology) in EMC
- Accepted \overline{n} candidate: search for n EMC showers on the opposite side of the detector
- ullet If multiple showers: select most back-to-back with respect to \overline{n} candidate
- ..

Appendix

Analysis Strategy

Expectations for Background:

- $e^+e^- \rightarrow n\overline{n}\pi^0$
- $e^+e^- o n\overline{n}\gamma_{FSR}$
- ullet $e^+e^-
 ightarrow n \overline{n} \gamma \pi^0$
- $e^+e^- o J/\Psi \gamma_{ISR}$, $J/\Psi o n\overline{n}$
- IRS/FSR interference does not contribute to cross section because of different charge parity of the amplitudes corresponding ISR/FSR¹
- FSR contribution estimated to be 10⁻³ of ISR cross section¹
- ..

¹Babar analysis document 855 - proton case

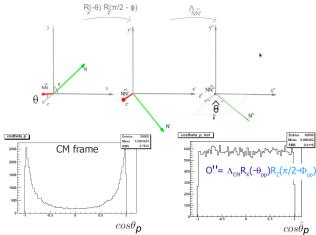
Paul Larin Supervisors: Frank Maas Cristina Morales

Motivat

Theoretical Basics Form Factors Space-Like Region

Designs FENIC

BESIII


To Do

Appendix

Analysis Strategy

Extraction of the form factors:

- Angular distribution analysis needed
- Transformation into $n\overline{n}$ rest-frame

Transformation into the $n\overline{n}$ rest-frame

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivat

Theoretical Basics Form Factors Space-Like Region Time-Like Region

Experiment Designs FENICE

Analysi

To Do

Appendix

Status and Outlook

- Phokhara standalone installation √
 - cross sections to small (Bug?) recognized yesterday ×
- MC true values simulation (Phokhara standalone) √
 - ► Solving problem with Phokhara standalone (contact Henryk Czyz) ×
- Boss installation in himster, blaster and ihep √
- Produced first MC signal samples at himster and ihep (.rtraw, .dst) √
- Write first version of analysis routine √
 - Many problems with himster → no plots at this time ×
 - Event-selection not ready yet ×
- Backgroung rejection, FFs extraction, systematic studies, ...

Paul Larin Supervisors: Frank Maas Cristina Morales

Motivatio

Theoretic:

Basics

Factors

Space-Like Region

Time-Lik

Designs

BESIII

Analysis

To Do

Appendix

Thank You!

Time-Like Form Factors of the Neutron @ BESIII Paul Larin Supervisors: Frank Maas Cristina Morales

IVIOLIVA

Theoretical Basics Form Factors Space-Like Region Time-Like Region

Experimen Designs FENICE BESIII

Analy

Appendix

Reaction	$Q^2 [{\rm GeV^2}]$	Observables	Laboratory	Year	Reference
$e + p \rightarrow e + p$	4.08-9.59	G_{Mp}	DESY	1966	Albrecht et al. [24]
,,	0.16 0.85	G_{Ep}, G_{Mp}	SLAC	1966	Janssens et al. [25]
"	0.69 - 25.03	G_{Mp}	SLAC	1968	Coward et al. [26]
"	0.4 - 2	G_{Ep},G_{Mp}	Bonn	1971	Berger et al. [27]
"	0.670 - 3.01	G_{Ep}, G_{Mp}	DESY	1973	Bartel et al. [28]
	0.999 - 25.03	G_{Mp}	SLAC	1973	Kirk <i>et al.</i> [29]
,,	2.86 - 31.2	G_{Mp}	SLAC	1993	Sill et al. [30]
,,	1-3	G_{Ep}, G_{Mp}	SLAC	1994	Walker et al. [31]
,,	1.75 - 8.83	G_{Mp}	SLAC	1994	Andivahis et al.[13]
,,	0.65 - 5.20	G_{Ep}, G_{Mp}	JLab, E94110	2004	Christy et al. [32]
,,	0.65 - 5.20	G_{Ep}, G_{Mp}	JLab, Hall A	2004	Qattan et al. [34]
$ \vec{e} + p \rightarrow e + \vec{p} $	0.49 3.47	G_{Ep}/G_{Mp}	JLAB, Hall A	2000	Jones et al. [5]
$\vec{e} + p \rightarrow e + \vec{p}$	3.5 - 5.5	G_{Ep}/G_{Mp}	JLAB, Hall A	2002	Gayou et al. [6]

TABLE I: Data considered in the present analysis, for proton FFs, in SL region.

Time-Like Form Factors of the Neutron @ BESIII Paul Larin Supervisors: Frank Maas Cristina Morales

Motiva

Theoretical Basics Form Factors Space-Like Region Time-Like Region

Designs FENICE BESIII

Analys

Appendix

Reaction	$Q^2 [{\rm GeV^2}]$	Observables	Laboratory	Year	Reference
$ed \rightarrow epn$	0.04- 1.16	G_{En}	SLAC	1965	Hughes et al. [35]
$ed \rightarrow epn$	0.19,0.39,0.56	G_{Mn}	New York	1966	Stein et al. [36]
$ed \rightarrow epn$	0.39-0.565	G_{Mn}, G_{En}	DESY	1969	Bartel et al. [37]
$ed \rightarrow epn$	0.28-1.8	G_{Mn}	Harvard	1973	Hanson et al. [38]
$ed \rightarrow epn$	2.5-10	G_{Mn}	SLAC	1982	Rock et al. [39]
$^{3}\vec{He}$	0.16	G_{En}	MIT	1991	Jones-Woodward et al. [40]
$ed \rightarrow epn$	0.435-1.36	G_{Mn}	New York	1964	Akerlof et al. [41]
$\vec{D}(\vec{e},e'\vec{n})p$.0.255	G_{En}	MIT	1994	Eden et al. [42]
D(e, e'n), D(e, e'p)	0.125-0.605	G_{En}	Bonn	1995	Bruins et al. [44]
D(e, e'n), D(e, e'p)	0.235-0.784	G_{En}	MAMI	1998	H. Anklin et al. [45]
$D(\vec{e}, e'\vec{n})p$	0.15	G_{En}	MAMI	1999	Herberg et al. [47]
$D(\vec{e}, e'\vec{n})p$	0.34	G_{En}	MAMI	1999	Ostrick et al. [48]
$\vec{D}(\vec{e},e'n)p$	0.21	G_{En}	NIKHEF	1999	Passchier et al. [49]
$^{3}ec{He}(ec{e},e'n)pp$	0.67	G_{En}	MAMI	2003	Bermuth et al. [50]
$^{3}\vec{He}(\vec{e},e')$	0.1-0.4	$G_{En}, G_{Mn},$	JLab	2000	Golak et al.[52]
$\vec{D}(\vec{e},e'n)p$	0.495	G_{En}	JLab	2001	Zhu et al. [53]
$\vec{D}(\vec{e},e'n)p$	0.5, 1	G_{En}	JLab	2004	Warren et al. [7]
$D(\vec{e}, e'\vec{n})p$	0.3-0.8	G_{En}	MAMI	2004	Glazier et al. [9]
$D(\vec{e}, e'\vec{n})p$	0.5-1.5	G_{En}	JLab	1999	Madey et al. [8]

TABLE II: Data considered in the present analysis, for neutron FFs, in SL region.

Form
Factors of
the
Neutron
@ BESIII
Paul Larin
Supervisors:
Frank Maas
Cristina
Morales

Time-Like

INIOTIVA

Theoretical Basics Form Factors Space-Like Region Time-Like Region

Experiment Designs FENICE BESIII

Analys

To D

Appendix

Reaction	$q^2 [\mathrm{GeV^2}]$	Laboratory	Year	Reference
$e^+e^- \to p\overline{p}$	4.3	ADONE, Frascati	1973	Castellano et al. [54]
$p\overline{p} \rightarrow e^+e^-$	3.52	CERN	1977	Bassompierre et al. [55]
$p\overline{p} \rightarrow e^+e^-$	3.61	CERN	1983	Bassompierre et al. [56]
$e^+e^- \rightarrow p\overline{p}$	3.75 - 4.56	Orsay,DCI	1979	Delcourt et al. [57]
$e^+e^- \rightarrow p\overline{p}$	4.0 - 5.0	Orsay, DCI	1983	Bisello et al. [11]
$p\overline{p} \rightarrow e^+e^-$	8.9-13.0	FERMILAB, E760	1993	Armstrong et al. [58]
$p\overline{p} \rightarrow e^+e^-$	3.52-4.18	CERN, LEAR	1994	Bardin et al. [12]
$e^+e^- \rightarrow p\overline{p}$	3.69-5.95	ADONE, FENICE	1994	Antonelli et al. [59]
$p\overline{p} \rightarrow e^+e^-$	8.84 - 18.40	FERMILAB, E835	1999	Ambrogiani et al. [60]
$p\overline{p} \rightarrow e^+e^-$	11.63- 18.22	FERMILAB, E835	2003	Andreotti et al. [2]
$e^+e^- \to n\overline{n}$	3.61- 5.95	ADONE, FENICE	1998	Antonelli et al. [45]
C C , 1010	0.01- 0.00	HEORE, LERRICE	1000	rintonem et at. [49]

TABLE III: Data considered in the present analysis for TL region.

Model from Lomon

$$\begin{split} F_1^v(Q^2) &= \frac{N}{2} \left[\frac{1.0317 + 0.0875(1 + Q^2/0.3176)^{-2}}{(1 + Q^2/0.5496)} + \frac{g_{\rho'}}{f_{\rho'}} \frac{m_{\rho'}^2}{m_{\rho'}^2 + Q^2} \right] F_1^\rho(Q^2) + \\ &\qquad \left(1 - 1.1192 \frac{N}{2} - \frac{g_{\rho'}}{f_{\rho'}} \right) F_1^D(Q^2), \\ F_2^v(Q^2) &= \frac{N}{2} \left[\frac{5.7824 + 0.3907(1 + Q^2/0.1422)^{-1}}{(1 + Q^2/0.5362)} + \kappa_{\rho'} \frac{g_{\rho'}}{f_{\rho'}} \frac{m_{\rho'}^2}{m_{\rho'}^2 + Q^2} \right] F_2^\rho(Q^2) + \\ &\qquad \left(\kappa_{\nu} - 6.1731 \frac{N}{2} - \kappa_{\rho'} \frac{g_{\rho'}}{f_{\rho'}} \right) F_2^D(Q^2), \\ F_1^s(Q^2) &= \left(\frac{g_\omega}{f_\omega} \frac{m_\omega^2}{m_\omega^2 + Q^2} + \frac{g_{\omega'}}{f_{\omega'}} \frac{m_{\omega'}^2}{m_\omega^2 + Q^2} \right) F_1^\omega(Q^2) + \\ &\qquad \frac{g_\phi}{f_\phi} \frac{m_\phi^2}{m_\phi^2 + Q^2} F_1^\phi(Q^2) + \left(1 - \frac{g_\omega}{f_\omega} - \frac{g_{\omega'}}{f_{\omega'}} \right) F_1^D(Q^2), \\ F_2^s(Q^2) &= \left(\kappa_\omega \frac{g_\omega}{f_\omega} \frac{m_\omega^2}{m_\omega^2 + Q^2} + \kappa_{\omega'} \frac{g_{\omega'}}{f_{\omega'}} \frac{m_\omega^2}{m_{\omega'}^2 + Q^2} \right) F_2^\omega(Q^2) + \kappa_\phi \frac{g_\phi}{f_\phi} \frac{m_\phi^2}{m_\phi^2 + Q^2} F_2^\phi(Q^2) + \\ &\qquad \left(\kappa_s - \kappa_\omega \frac{g_\omega}{f_\omega} - \kappa_\omega \frac{g_{\omega'}}{f_{\omega'}} - \kappa_\phi \frac{g_\phi}{f_\phi} \right) F_2^D(Q^2), \end{split}$$

with

$$\begin{split} F_1^{\alpha,D}(Q^2) \; &= \; \frac{\Lambda_{1,D}^2}{\Lambda_{1,D}^2 + \widetilde{Q}^2} \frac{\Lambda_2^2}{\Lambda_2^2 + \widetilde{Q}^2}, \; \alpha = \rho, \; \omega \; and \; \Lambda_{1,D} \equiv \Lambda_1 \; \text{for} F_i^\alpha, \; \Lambda_{1,D} \equiv \Lambda_D \; for \; F_i^D \\ F_2^{\alpha,D}(Q^2) \; &= \; \frac{\Lambda_{1,D}^2}{\Lambda_{1,D}^2 + \widetilde{Q}^2} \left(\frac{\Lambda_2^2}{\Lambda_2^2 + \widetilde{Q}^2} \right)^2, \; F_1^\phi(Q^2) = F_1^\alpha \left(\frac{Q^2}{\Lambda_1^2 + Q^2} \right)^{1.5}, \\ F_2^\phi(Q^2) \; &= \; F_2^\alpha \left(\frac{\Lambda_1^2}{\mu_\phi^2} \frac{Q^2 + \mu_\phi^2}{\Lambda_1^2 + Q^2} \right)^{1.5}, \; \widetilde{Q}^2 = Q^2 \frac{ln[(\Lambda_D^2 + Q^2)/\Lambda_{QCD}^2]}{ln(\Lambda_D^2/\Lambda_{QCD}^2)}. \end{split}$$

Paul Larin Supervisors: Frank Maas Cristina Morales

Space-Like

Appendix

Model from lachello, Jackson, Lande

$$\begin{split} F_1^s(Q^2) &= \frac{g(Q^2)}{2} \left[(1-\beta_\omega - \beta_\phi) + \beta_\omega \frac{\mu_\omega^2}{\mu_\omega^2 + Q^2} + \beta_\phi \frac{\mu_\phi^2}{\mu_\phi^2 + Q^2} \right], \\ F_1^v(Q^2) &= \frac{g(Q^2)}{2} \left[(1-\beta_\rho) + \beta_\rho \frac{\mu_\rho^2 + 8\Gamma_\rho \mu_\pi/\pi}{(\mu_\rho^2 + Q^2) + (4\mu_\pi^2 + Q^2)\Gamma_\rho \alpha(Q^2)/\mu_\pi} \right], \\ F_2^s(Q^2) &= \frac{g(Q^2)}{2} \left[(\mu_p + \mu_n - 1 - \alpha_\phi) \frac{\mu_\omega^2}{\mu_\omega^2 + Q^2} + \alpha_\phi \frac{\mu_\phi^2}{\mu_\phi^2 + Q^2} \right], \\ F_2^v(Q^2) &= \frac{g(Q^2)}{2} \left[(\mu_p - \mu_n - 1) \frac{\mu_\rho^2 + 8\Gamma_\rho \mu_\pi/\pi}{(\mu_\rho^2 + Q^2) + (4\mu_\pi^2 + Q^2)\Gamma_\rho \alpha(Q^2)/\mu_\pi} \right], \end{split}$$

with
$$g(Q^2) = \frac{1}{(1 + \gamma e^{i\theta}Q^2)^2}$$
 and $\alpha(Q^2) = \frac{2}{\pi}\sqrt{\frac{Q^2 + 4\mu_\pi^2}{Q^2}ln\left[\frac{\sqrt{(Q^2 + 4\mu_\pi^2)} + \sqrt{Q^2}}{2\mu_\pi}\right]}$, with the standard values of the masses $m = 0.939$ GeV, $\mu_\rho = 0.77$ GeV, $\mu_\omega = 0.78$ GeV, $\mu_\phi = 1.02$ GeV, $\mu_\pi = 0.139$ GeV and the ρ width $\Gamma_\rho = 0.112$ GeV.