

Measurements of the Relative Phase of Timelike Form Factors GM and GE at PANDA

Keith Griffioen
Helmholtz Institute Mainz
College of William & Mary

griff@physics.wm.edu

HIM 19 April 2012

5 April 2012 HIM

Questions

• Time-like form factors G_E and G_M are complex quantities. Can we measure the phase angle between them?

 What implications does this have on polarized target apparatus that obstructs e⁺e⁻ events?

Formalism

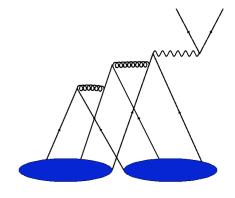
Beam(1) & Target(2) Spin

Egle Tomasi-Gustafsson, EPJA24(05)419

$$\left(\frac{d\sigma}{d\Omega} \right) (\mathbf{S_1}, \mathbf{S_2}) = \left(\frac{d\sigma}{d\Omega} \right)_0 [1 + A_y (S_{1y} + S_{2y}) + A_{xx} S_{1x} S_{2x} + A_{yy} S_{1y} S_{2y} + A_{zz} S_{1z} S_{2z} + A_{xz} (S_{1x} S_{2z} + S_{1z} S_{2x})]$$

$$\left(\frac{d\sigma}{d\Omega}\right)_0 A_y = \frac{N}{\sqrt{\tau}} \sin 2\theta Im(G_M G_E^*)$$

$$\left(\frac{d\sigma}{d\Omega}\right)_0 A_{xx} = N \sin^2 \theta \left[|G_M|^2 + \frac{1}{\tau}|G_E|^2\right]$$


$$\left(\frac{d\sigma}{d\Omega}\right)_0 A_{yy} = -N \sin^2 \theta \left[|G_M|^2 - \frac{1}{\tau}|G_E|^2\right]$$

$$\left(\frac{d\sigma}{d\Omega}\right)_0 A_{xz} = \frac{N}{\sqrt{\tau}} \sin 2\theta Re(G_M G_E^*)$$

$$\left(\frac{d\sigma}{d\Omega}\right)_0 A_{zz} = N \left[(1 + \cos^2 \theta)|G_M|^2 - \frac{1}{\tau} \sin^2 \theta |G_E|^2\right]$$

$$\tau = \frac{q^2}{4M^2}$$

$$N = \frac{\alpha^2}{4q^2\sqrt{1 - 1/\tau}}$$

5 April 2012

Transversely Polarized Target

CM angle >

Egle Tomasi-Gustafsson, EPJA24(05)419

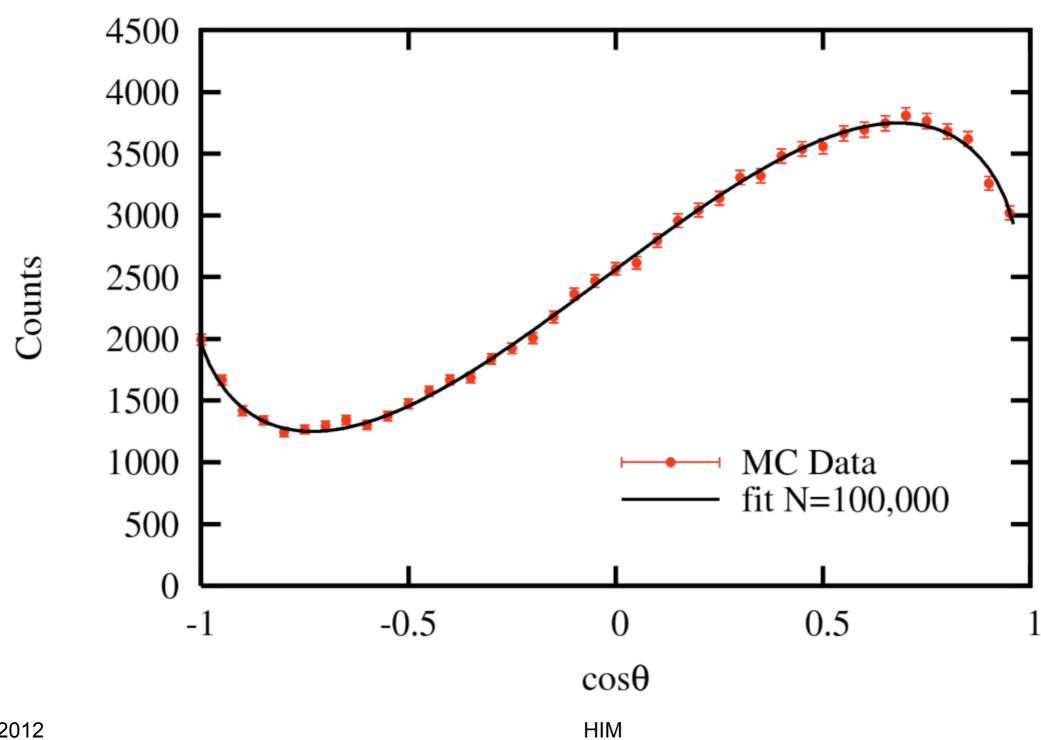
$$\left(\frac{d\sigma}{d\Omega}\right)_0 = N|\bar{G}_M|^2 \left[(1+\cos^2\theta) + \rho^2(1-\cos^2\theta) + |S_\perp|\rho\sin 2\theta\sin \Delta\phi \right]$$

$$G_M = \bar{G}_M e^{i\phi_M}$$
 $G_E = \bar{G}_E e^{i\phi_E}$

$$\Delta \phi = \phi_M - \phi_E$$
 $R = \frac{\bar{G}_E}{\bar{G}_M}$ $\rho = \frac{R}{\sqrt{\tau}}$

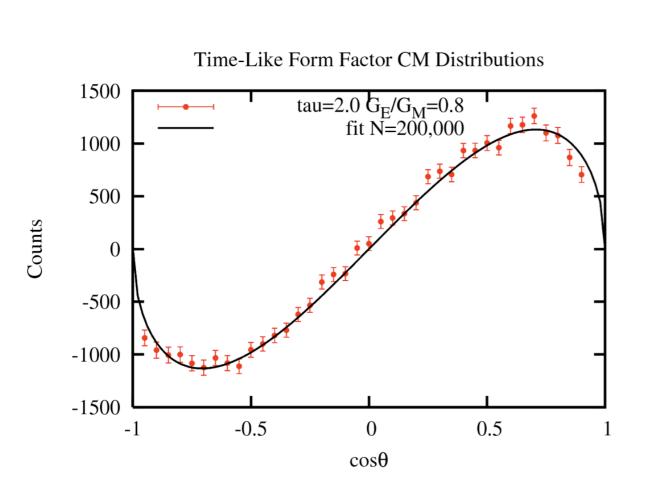
$$A_y = \frac{\sin 2\theta \sin \Delta \phi}{(\rho + \frac{1}{\rho}) + (\frac{1}{\rho} - \rho)\cos^2 \theta}$$

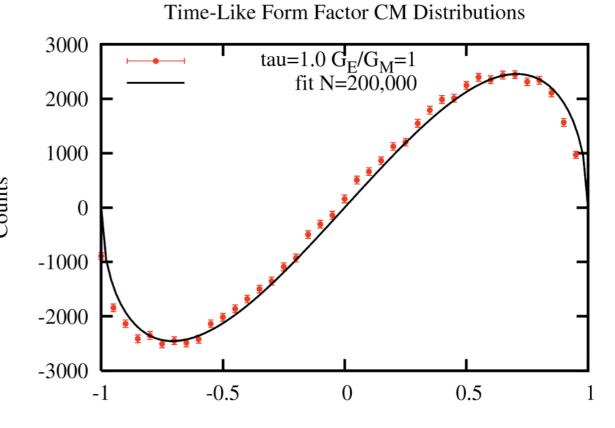
Because the asymmetry contains a large $\cos^2\theta$ term in the denominator it's probably better to measure cross section differences

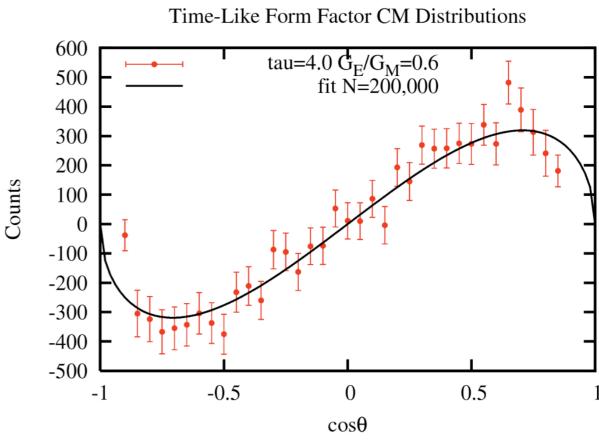

 $A_y \sim 0.5 @ T=1, R=1 to \sim 0.08 @ T=6, R=0.4$

MC Generator

Create a generator for $f(\theta) = 2 + \sin 2\theta$

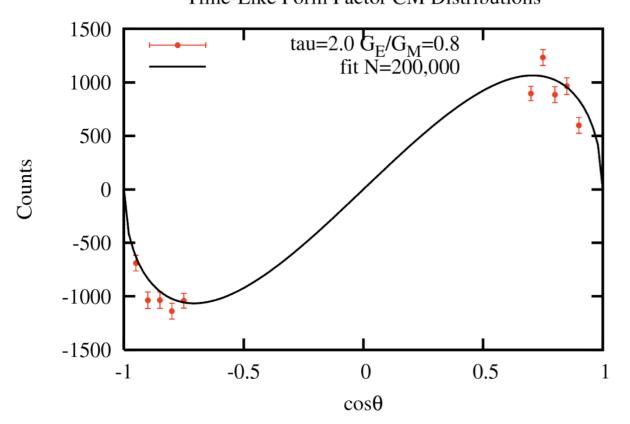


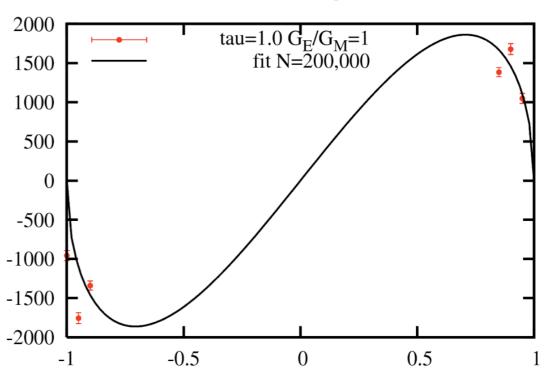




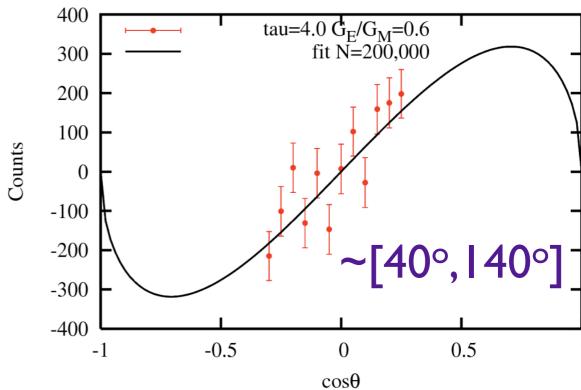
Fits to Extract Δφ

Toy Monte Carlo Simulations of $e^+e^-\Delta\sigma$ Transversely Polarized Events. Experimental cuts of 8° $<\theta_{e^+,e^-}|_{ab}<172^\circ;\,N=200,000$ Fits to $u=\cos\theta_{cm}$ of the form $f(u)=au\sqrt{(1-u^2)}$

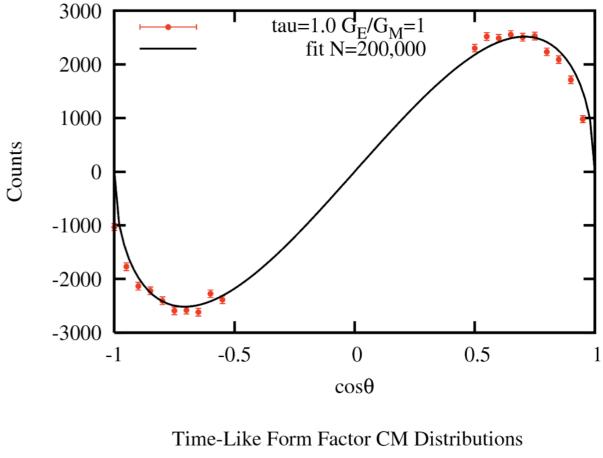


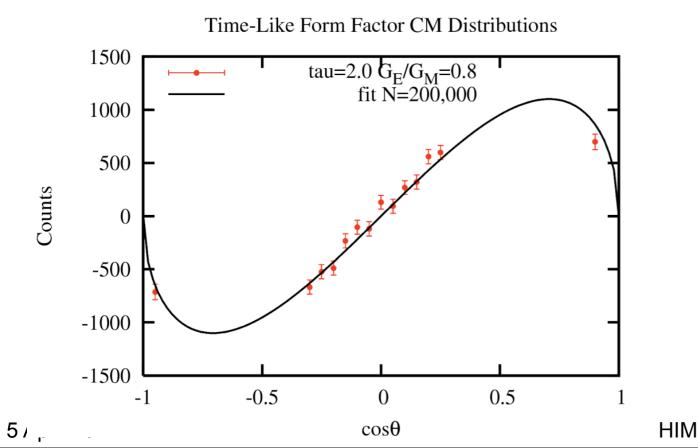

With Target Obstruction

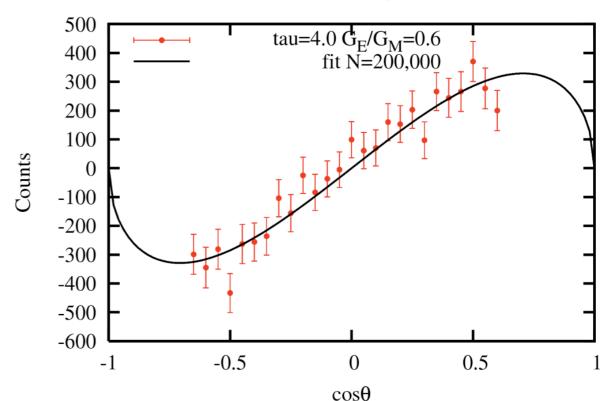
Experimental cuts of $8^{\circ} < \theta_{e^+,e^-}$ lab $< 172^{\circ}; N=200,000$ Exclude $[30^{\circ},150^{\circ}]$ assuming this is obstructed by a flux exclusion tube Fits to $u=\cos\theta_{cm}$ of the form $f(u)=au\sqrt{(1-u^2)}$


Time-Like Form Factor CM Distributions

Time-Like Form Factor CM Distributions


Time-Like Form Factor CM Distributions




With Target Obstruction

Experimental cuts of $8^{\circ} < \theta_{e^+,e^-}$ lab $< 172^{\circ}; N=200,000$ Exclude $[60^{\circ},120^{\circ}]$ assuming this is obstructed by a flux exclusion tube Fits to $u=\cos\theta_{cm}$ of the form $f(u)=au\sqrt{(1-u^2)}$

Time-Like Form Factor CM Distributions

Realistic Counts

τ	Q ² (GeV ²)	σ (fb)	Events	MC Events	G _E /G _M	Exclude Nothing	Exclude [30,150]	Exclude [60,120]	60° w/ Dilution
1.0	3.5	8.39×10 ⁷	1.6×10 ⁸	200000	1.0	0.982 (0.020)	0.745 (0.127)	1.007 (0.026)	9%
2.0	7.0	8.07×10 ⁴	1.6×10 ⁵	200000	0.8	1.073 (0.019)	1.009 (0.049)	1.044 (0.055)	19%
4.0	14.1	1.02×10 ³	2.0×10 ³	200000	0.6	0.984 (0.050)	1.003 (0.201)	0.994 (0.066)	229%

- Assuming phase difference is 90° (i.e. maximal signal)
- Polystyrene is $(C_8H_8)_n$; Dilution factor $f \sim 8/(8x12) = 1/12$
- Events for τ=4 are more like 2000; a factor of 100 less

5 April 2012 HIM

Conclusions

These toy Monte Carlo results are very preliminary.

 One needs to get as much acceptance as possible with a transversely polarized target

• A 30° limit from a flux exclusion tube is marginal for such a measurement and 60° would be much better.