Measurements of the Relative Phase of Timelike Form Factors GM and GE at PANDA

Keith Griffioen
Helmholtz Institute Mainz
College of William \& Mary

griff@physics.wm.edu
HIM 19 April 2012

Questions

- Time-like form factors G_{E} and G_{m} are complex quantities. Can we measure the phase angle between them?
-What implications does this have on polarized target apparatus that obstructs $\mathrm{e}^{+} \mathrm{e}^{-}$events?

Formalism

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)\left(\mathbf{S}_{1}, \mathbf{S}_{2}\right)=\left(\frac{d \sigma}{d \Omega}\right)_{0}^{\left[1+A_{y}\left(S_{1 y}+S_{2 y}\right)+\right.} \\
& \left.A_{x x} S_{1 x} S_{2 x}+A_{y y} S_{1 y} S_{2 y}+A_{z z} S_{1 z} S_{2 z}+A_{x z}\left(S_{1 x} S_{2 z}+S_{1 z} S_{2 x}\right)\right]
\end{aligned}
$$

$$
\begin{gathered}
\left(\frac{d \sigma}{d \Omega}\right)_{0} A_{y}=\frac{N}{\sqrt{\tau}} \sin 2 \theta \operatorname{Im}\left(G_{M} G_{E}^{*}\right) \\
\left(\frac{d \sigma}{d \Omega}\right)_{0} A_{x x}=N \sin ^{2} \theta\left[\left|G_{M}\right|^{2}+\frac{1}{\tau}\left|G_{E}\right|^{2}\right] \\
\left(\frac{d \sigma}{d \Omega}\right)_{0} A_{y y}=-N \sin ^{2} \theta\left[\left|G_{M}\right|^{2}-\frac{1}{\tau}\left|G_{E}\right|^{2}\right] \\
\left(\frac{d \sigma}{d \Omega}\right)_{0} A_{x z}=\frac{N}{\sqrt{\tau}} \sin 2 \theta R e\left(G_{M} G_{E}^{*}\right) \\
\left(\frac{d \sigma}{d \Omega}\right)_{0} A_{z z}=N\left[\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}-\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right]
\end{gathered}
$$

$$
\begin{aligned}
& \tau=\frac{q^{2}}{4 M^{2}} \\
& N=\frac{\alpha^{2}}{4 q^{2} \sqrt{1-1 / \tau}}
\end{aligned}
$$

Transversely Polarized Target

CM angle
Egle Tomasi-Gustafsson, EPJA24(05)419

$$
\left(\frac{d \sigma}{d \Omega}\right)_{0}=N\left|\bar{G}_{M}\right|^{2}\left[\left(1+\cos ^{2} \theta\right)+\rho^{2}\left(1-\cos ^{2} \theta\right)+\left|S_{\perp}\right| \rho \sin 2 \theta \sin \Delta \phi\right]
$$

$$
\begin{aligned}
G_{M} & =\bar{G}_{M} e^{i \phi_{M}} \\
G_{E} & =\bar{G}_{E} e^{i \phi_{E}}
\end{aligned}
$$

$$
\Delta \phi=\phi_{M}-\phi_{E} \quad R=\frac{\bar{G}_{E}}{\bar{G}_{M}} \quad \rho=\frac{R}{\sqrt{\tau}}
$$

$$
A_{y}=\frac{\sin 2 \theta \sin \Delta \phi}{\left(\rho+\frac{1}{\rho}\right)+\left(\frac{1}{\rho}-\rho\right) \cos ^{2} \theta}
$$

Because the asymmetry contains a large $\cos ^{2} \theta$ term in the denominator it's probably better to measure cross section differences
$A_{y} \sim 0.5 @ T=I, R=I$ to ~ 0.08 @ T=6, R=0.4

MC Generator

Create a generator for $f(\theta)=2+\sin 2 \theta$

Fits to Extract $\Delta \phi$

Time-Like Form Factor CM Distributions
Toy Monte Carlo Simulations of $\mathrm{e}^{+} \mathrm{e}^{-} \Delta \sigma$ Transversely Polarized Events. Experimental cuts of 8° $<\theta_{\text {e }+, \text { e- }}$ lab $<172^{\circ} ; \mathrm{N}=200,000$
Fits to $\mathrm{u}=\cos \theta_{\mathrm{cm}}$ of the form $\mathrm{f}(\mathrm{u})$

$$
=a u \sqrt{ }\left(I-u^{2}\right)
$$

Time-Like Form Factor CM Distributions

Time-Like Form Factor CM Distributions

With Target Obstruction
Experimental cuts of $8^{\circ}<\theta_{\mathrm{e}^{+}, \mathrm{e}-\mathrm{Ib}}$
< 172°; $\mathrm{N}=200,000$
Exclude [$30^{\circ}, 150^{\circ}$] assuming this is obstructed by a flux exclusion tube Fits to $\mathrm{u}=\cos \theta_{\mathrm{cm}}$ of the form $\mathrm{f}(\mathrm{u})$

$$
=a u \sqrt{ }\left(I-u^{2}\right)
$$

Time-Like Form Factor CM Distributions

Time-Like Form Factor CM Distributions

Time-Like Form Factor CM Distributions

With Target Obstruction

Experimental cuts of $8^{\circ}<\theta_{\mathrm{e}^{\mathrm{e}, \mathrm{e}}}{ }^{\text {lab }}$
$<172^{\circ}$; $\mathrm{N}=200,000$
Exclude $\left[60^{\circ}, 120^{\circ}\right]$ assuming this is obstructed by a flux exclusion tube
Fits to $u=\cos \theta_{\mathrm{cm}}$ of the form $f(u)$ $=a u \sqrt{ }\left(I-u^{2}\right)$

Time-Like Form Factor CM Distributions

Time-Like Form Factor CM Distributions

Time-Like Form Factor CM Distributions

Realistic Counts

T	Q^{2} $\left(\mathrm{GeV}^{2}\right)$	$\sigma(\mathrm{fb})$	Events	MC Events	$\mathrm{G}_{\mathrm{E}} / \mathrm{GM}$	Exclude Nothing	Exclude $[30,150]$	Exclude $[60,120]$	$60^{\circ} \mathrm{w} /$ Dilution
1.0	3.5	8.39×10^{7}	1.6×10^{8}	200000	1.0	0.982 (0.020)	0.745 (0.127)	1.007 (0.026)	9%
2.0	7.0	8.07×10^{4}	1.6×10^{5}	200000	0.8	1.073 (0.019)	1.009 (0.049)	1.044 (0.055)	19%
4.0	14.1	1.02×10^{3}	2.0×10^{3}	200000	0.6	0.984 (0.050)	1.003 (0.201)	0.994 (0.066)	229%

- Assuming phase difference is 90° (i.e. maximal signal)
-Polystyrene is $\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{\mathrm{n}}$; Dilution factor $\mathrm{f} \sim 8 /(8 x 12)=1 / 12$
-Events for $\mathrm{T}=4$ are more like 2000; a factor of 100 less

\&
 Conclusions

- These toy Monte Carlo results are very preliminary.
- One needs to get as much acceptance as possible with a transversely polarized target
- A 30° limit from a flux exclusion tube is marginal for such a measurement and 60° would be much better.

