Development of a Superconducting Cryostat-Internal Polarizing Magnet for Polarized Targets

- Overview
 - The Crystal-Barrel Experiment at ELSA (Electron Stretcher and Accelerator) in Bonn
 - Elements of a Polarized Target
 - Advantages of an internal polarizing magnet
 - Homogeneity requirement
 - Development so far

Development of a Superconducting Cryostat-Internal Polarizing Magnet for Polarized Targets

- Simulation
 - Mathematical model
 - Parametrization
- Results
 - Solenoid without correction
 - Corrected solenoid/ Technical difficulties
 - Strayfield
 - Quench
- Further steps and prospect

The Crystal-Barrel Experiment at ELSA

- Dubble polarization experiment
- Investigation of the nucleon structure by determination of relevant polarization observables as complete as possible
- Frozen-Spin-Technology

Elements of the Polarized Target

Frozen-Spin-Concept

Frozen-Spin-Concept

Advantages of an Internal Polarizing Magnet

- Continuous 90% polarization and simultaneous operation of a 4π -Detektor instead of 75% mean polarization in Frozen-Spin-Mode
- No halt of the experiment for polarization
- Measurement of polarization any time

Upgrade of the internal holding coil by an internal polarizing magnet

Polarization Cycle

Polarization Cycle

Constraints on the Inhomogeneity of the Magnetic Field

$$\nu_e = 70 \text{ GHz}$$
 $\nu_p = 106 \text{ MHz}$ B=2.5 T

 $h\nu = \gamma B \qquad \frac{\Delta B}{B_0} = \frac{\Delta \nu_e}{\nu_e} \ll \frac{106 \mathrm{MHz}}{70 \mathrm{GHz}} \approx 10^{-3} \implies 10^{-4}$

Development So Far in Bonn

Rainer Gehring: Development of an internal holding coil, Diplomarbeit 1993

- Christian Rohlof: Development of an internal polarizing magnet with an extremely high field and less inhomogeneity (Notched Coil), Dissertation 2003
- Fadi Zarife: further possibilities of correction, Diplomarbeit 2008

Simulation

Biot-Savart-Law

$$\overrightarrow{B}(\overrightarrow{x_0}) = \frac{\mu_0}{4\pi} I \int \frac{(\overrightarrow{\gamma}(t) - \overrightarrow{x_0}) \times \frac{\dot{\overrightarrow{\gamma}(t)}}{|\overrightarrow{\gamma}(t)|}}{|(\overrightarrow{\gamma}(t) - \overrightarrow{x_0})|^3} dl$$

with

$$dl = \sqrt{\dot{\overrightarrow{\gamma}}(t)} \dot{\overrightarrow{\gamma}}(t) dt$$

 $\vec{\gamma}(t) = (x(t), y(t), z(t))$

Simulation

Parametrisation of a Solenoid

$$\vec{\gamma}(t) = (f \cos t, f \sin t, \frac{r}{2\pi}t)$$

–number of windings $\pi < t <$ number of windings π

radius of the coil : fspace (diameter) of the wire : r Simulation

Display of the Inhomogeneity in the Target Region

Solenoid Without Correction

Correction Windings (Helmholtzlike Configuration)

Concept of the Inverse Notched Coil (Correction Coil in Helmholtzlike Configuration)

Coil support Notched Coil

Coil support with indentations

Parameter Surface of the Correction Coil Location

Parameter Surface of the Correction Coil Location

Fixed Width to 2.3 mm

Superposition of solenoid and correction coil pair width 2.3 mm and distance 53,8 mm 2 layers

Design of the Support (OF Copper) (Inverse Notched Coil)

Angaben in mm (± 0.05 mm)

Test of the Production Process

Test of the Production Process

Solution: Windings Stopper

Optimum with new arrangement

Redesign of the Support (OF Copper) (Inverse Notched Coil)

Angaben in mm (± 0.05 mm)

Strayfield

Critical Surface J(T,B)

Maximum Flux Density at the Conductor

L.Bottura, "A Practical Fit for the Critical Surface of NbTi"

- Status Quo
 - Test winding with copper wire on a part of the coils support
- Further Steps
 - Winding on a whole support structure with copper wire
 - Measurement of the coil at room temperature
 - Winding of the coil with superconductor
 - Installation in the new cryostat
 - Polarization
 - Measurement of the polarization via NMR

Conclusion of the Inverse Notched Coil Concept

- Internal polarization magnet with flux density 2.5 T
- Inhomogeneity under 10^{-4}
- Recalculation with stopper and thicker wire
- Small strayfield does not disturb the detector components
- Stability of operation (No quenching)

Prospect

Alternative Correction Coil Differential Winding Density

Parametrisation of Correction Coil

One half of the coil

$$\overrightarrow{\gamma}(t) = (f\cos(t), f\sin(-t), L - (\frac{r}{\pi}t))$$

minimal slope

-number of windings $\pi < t <$ number of windings π

 $k(w) = \frac{L - 2rw}{8\pi^3 w^3}$ Number of windings : w Total length of coil : 2L

$$dl = \sqrt{\dot{\vec{x}}(t)\dot{\vec{x}}(t)}dt = \sqrt{f^2 + \frac{(r + 3\pi kt^2)^2}{\pi^2}}dt$$

Parameter-Sweep

Minimum at (332;2)

Inhomogeneity of the Correction Coil

Ausblick Corrected, 5-Layer-Solenoid with 332 Correction Windings

Conclusion

- Numerical simulation of an internal polarizing magnet with high field and low inhomogeneity for continuous polarization
- Two different solutions regarding the problem of inhomogeneity of a solenoid
- Comparison of the two models