

TWEPP-09 Topical Workshop on Electronics for Particle Physics 22 September 2009, Paris

Front-End Electronics for Pixel Detector of the PANDA MVD

D. Calvo¹, <u>**T. Kugathasan^{1,2}**</u>, P. De Remigis¹, G.Mazza¹, M. Mignone¹, A. Rivetti¹, and R. Wheadon¹

1 INFN, Sezione di Torino, Italy 2 Università di Torino, Dip. di Fisica Sperimentale, Italy

PANDA @ FAIR

A Facility for Antiproton and Ion Research

panda antiProton ANnihilation at DArmstadt

Strong Interaction Studies with Antiprotons

glueballs and hybrids

T.Kugathasan

Antiproton Beam

HESR = High Energy Storage Ring Momentum: 1.5 GeV/c - 15 GeV/c

eV/c	Luminosity	Momentum Resolution (δp/p)
ligh luminosity mode	2x10 ³² cm ⁻² s ⁻¹	~10 ⁻⁴ (stochastic cooling)
ligh resolution mode	10 ³¹ cm ⁻² s ⁻¹	~10 ⁻⁵ (electron cooling < 8 GeV/c)

The PANDA apparatus

Micro Vertex Detector

Target Spectrometer

The MVD is the closest detector to the interaction point

Primary function: vertexing.

Additional task: dE/dx information for dE up to 2.3 MeV.

- > Four barrels:
 - Two Inner layers: pixels
 - Two outer layers: strip
- Six forward disks:
 - 4 pixel + 2 mixed disks.

Read-Out channels and area coverage:

- Pixels : 11M channels, 0.14 m².
- Strips : 70k channels, 0.5 m².

T.Kugathasan

Specifications for the pixel detector

Pixel cell specifications		ASIC specifications	
Pixel Size	100µm x 100µm	Trigger	Self triggering
Noise Level	< 200 e⁻ rms	Active area	O(1cm²)
Linear dynamic range	Up to 100fC	Data rate	O(0.8 Gbit/s)
Power consumption	< 20µW	Radiation tolerance	10 Mrad
Input polarity	Selectable	Simultaneous time stamping and charge measurement	
Leakage compensation	Up to 50 nA	Good time resolution clock) with	n 6 ns rms (at 50 MHz 2·10 ⁷ ann/s

A custom solution for the readout of the pixel detector is motivated by the high track density (up to 12.3 M hit/(s cm²)) and the absence of a trigger signal.

Technology: CMOS 130nm

T.Kugathasan

Time Over Threshold

The Time over Threshold (ToT) technique permits to measure a charge by measuring the time needed to discharge it with a constant current (I_{dis}).

$$\mathbf{v_{out}}(t) = \frac{Q_{in}(t)}{C_{f}} = \frac{1}{C_{f}} \int_{0}^{t} (\mathbf{I_{in}}(t') - \mathbf{I_{dis}}(t')) dt'$$

Since the charge injection time is 10³ smaller than the discharging time:
$$Q_{inj} = \int_{0}^{s} \mathbf{I_{in}}(t') dt' \qquad \mathbf{v_{out}}(t) = \frac{Q_{inj} - \mathbf{I_{dis}} t}{C_{f}}$$
$$\mathbf{v_{out}}(ToT) = \frac{Q_{inj} - \mathbf{I_{dis}} ToT}{C_{f}} = 0 \rightarrow ToT = \frac{Q_{inj}}{\mathbf{I_{dis}}}$$

The ToT allows to achieve good linearity and excellent resolution even when the preamplifier is saturated, thus making room for an high dynamic range.

Analog Front-End

The Analog Front-End generates a pulse whose width is proportional to the injected charge by the sensor.

Charge sensitive amplifier

Current: 2μ A in the input device, 1μ A in the source follower.

Feedback circuit

It keeps the output at the reference voltage, discharging the charge deposited on the input node.

This stage provides also the injection of the leakage compensation current at the input node.

Compensation current injected trough current mirror

Compensation current injected directly

T.Kugathasan

Leakage current compensation

Linear mode and Saturated mode

Core amplifier	Signal charge integration
Non saturated	on the feedback capacitor C_f
Saturated	on the input capacitor C _{in}
C _{in} = 200 fF C _f = 24 fF	Charge gain in linear mode: $V_{out}/Q_{in} = 1/C_f = 41.7 \text{ mV/fF}$

T.Kugathasan

Saturation and Cross Talk (1)

Due to the inter-pixel capacitance a voltage signal at the input of one channel induces a spurious signal at the input of the adjacent pixel.

When the preamplifier saturates the input node is no more a virtual ground and the cross-talk effect turn up.

Pixel Matrix

Hit event

Adjacent Coupled Detectors

Saturation and Cross Talk (2)

Simulation done by a inter-pixel coupling capacitance: $C_c = 100 fF$

Pixel readout channel output

- Hit signal
- Spurious signal

Comparator

To mitigate the threshold dispersion a local five bit DAC is added in each pixel, to allow a fine tuning of the threshold on a pixel by pixel basis:

- > DAC can sink or source current to a low impedance node: 4+1 bit operation.
- DAC full scale range depends on external biasing.

P-Type sensors ToT Linearity

T.Kugathasan

N-Type sensors dynamic Range

Digital Read Out

Pixel Layout

Each cell incorporates the analog and digital electronics necessary to amplify the detector signal and to digitize the charge information.

Single Pixel Power dissipation of 15 μ W from a 1.2 V power supply.

 $100 \ \mu m$

T.Kugathasan

ToPix 2.0

ToPix 2.0 is a reduced scale prototype chip for the hybrid pixel sensors.

It has been designed in a CMOS 0.13 μm technology and successfully tested.

- It has 320 pixel cell in four columns: Two short columns with 32 pixels. Two folded column with 128 pixels.
 - Simplified end-of-column logic.
 - Sixteen pixels with wire bonding pad.

The final version of ToPiX will consist of a matrix of 116x110 cells with a pixel size 100 μ mx100 μ m, thus covering a 1.27 cm² active area.

ToPix 2.0 – Layout and Photo

Measure: ToT uniformity

The discharging feedback current has no implication on the uniformity between the different channels. ToT uniformity may be improved by reducing the mismatch effects of the leakage compensation stage input transistors

Measure: threshold dispersion

T.Kugathasan

Measure: Calibration with Am source

Calibration with 60 KeV γ (Americium source) Standard Floating Zone p-type sensor 300 μ m thick, size: 50 μ m x 425 μ m

First spectra with an epi-sensor

Epitaxial sensor 50 μm thick, size: 125μm x 325 μm

Signal to noise ratio is limited by parasitics capacitance due the external connections: Bonding pad + wirebonding + protection diodes

Conclusion

Tests show good agreement between specifications and measurements.

An upgrade of Topix 2.0. is currently under design:

- ToT uniformity has to be improved (< 10%).
- A more compact leakage compensation stage.
- Compatible with 160 MHz Clock.

Backup Slides

T.Kugathasan

Topix 1.0 – Analog Output (1)

Topix 1.0 – Analog Output (2)

ToT measurement

Time Walk

Jitter

