

Analysis of tracking data from a Si-strip telescope

<u>Simone Bianco</u>, Max Becker, Kai-Thomas Brinkmann, Ralf Kliemt, Karsten Koop, Robert Schnell, Thomas Würschig, Hans Georg Zaunick

Bundesministerium für Bildung und Forschung

DPG Spring Meeting 2011, Muenster 21.03.2011

Bonn-Cologne Graduate School of Physics and Astronomy

Outline:

- Setup of the Bonn telescope
- Optimization of the setup:
 - ✓ Rotation of one sensor✓ Longitudinal scan
- Scattering measurements

The Bonn Si-strip telescope

Experimental Setup:

4 scintillators (mostly triggering on 3 out of 4)2 double sided silicon strip detectors4 single sided silicon strip detectors

Available beams:

Protons: 800 MeV/c 2.95 GeV/c Electrons: 1 – 5 GeV

letectors

Setups:

Holding structure for scatterers Z-positioning for the 4 boxes One rotatable box

Software Tools:

Offline alignment Calibration DAQ → pandaroot Analysis tools

DAQ to PANDAroot

Alignment

Iterative procedure to align sensors:

- 1. Measure residual on the 1st sensor
- 2. Correct the position of the 1st sensor
- 3. 2nd sensor... 6th sensor
- 4. Reiterate the whole loop

Energy Calibration

Realized in two steps:

- ✓ Same charge injected on each of the FE channels
 → to resolve differences in the response
- ✓ MIP hypothesis
 - \rightarrow to set an absolute ADC counts-to-energy-loss scale

Rotation of One Sensor

Rotation of One Sensor - Simulations

Electrons of 4 GeV, results obtained with Geant3

Translation of One Sensor

Scattering Measurements

2 hits before the volume 2 hits downstream

Measurements of the scattering angle

Scatterers:

- a carbon foil (0.6 mm thick)
- 1 cm of C-like material (1.79 g/cm³)
- 2 cm of C-like material (1.69 g/cm³)
- 2.5 cm of carbon foam with a density of ~ 0.52 g/cm³
- 4 mm thick carbon foam support disk with a density of ~ 1.1 g/cm³

Beam: 2.95 GeV/c protons

Scattering – Measured Data

Scattering – Measured Data II

Measurements performed at DESY compared with Geant3 simulations

Scatterer	e ⁻ Momentum	Sigma Meas. (rad)	Sigma Sim (rad)
air	1 GeV/c	0.00124	0.00140
air	3 GeV/c	0.000423	0.000476
air	5.4 GeV/c	0.000243	0.000284
2.5 cm C-Foam	1 GeV/c	0.002184	0.002544
2.5 cm C-Foam	3 GeV/c	0.0007455	0.0008869
2.5 cm C-Foam	4 GeV/c	0.0005876	0.0006453
1 Cm C	1 GeV/c	0.002483	0.002894
1 Cm C	5.4 GeV/c	0.0005109	0.0005986
2 Cm C	1 GeV/c	0.003145	0.003820
2 Cm C	5 GeV/c	0.0006978	0.0008071
Foam Disk	1 GeV/c	0.001758	0.001866
Foam Disk	3 GeV/c	0.0006004	0.0006105
Foam Disk	4 GeV/c	0.0004709	0.0004831

Conclusions

- The Bonn Si-telescope has been tested successfully in several beam conditions
- The effects of the rotation of one sensor are compatible with what is foreseen by simulations
- Using a high momentum electron beam the best unbiased resolution is achieved with a small distance between the first two boxes
- Scattering can be measured even in light and thin scatterers
- Materials aimed to be used for cooling or support structure (ie: for PANDA Micro Vertex Detector) can be characterized in terms of multiple scattering introduced

Thanks for your attention!