

The Strip Detector of the PANDA MVD

<u>Tommaso Quagli</u>, Kai-Thomas Brinkmann, Robert Schnell, Hans-Georg Zaunick II. Physikalisches Institut, JLU Gießen

on behalf of the PANDA MVD Group

RD13 Conference July 5th, 2013

Outline

1. Design of the PANDA MVD

- The PANDA Experiment
- Disk and Barrel Parts of the Detector
- Mechanical Integration of the Barrels
- Powering Concept

2. Hardware developments

- Front-end ASIC
- Double-sided Silicon Strip Sensors
- Sensor Irradiations
- Hybrid Bus

Design of the PANDA MVD

The PANDA Experiment

- Fixed target experiment at FAIR, Darmstadt
- Antiproton beam with p = 1.5 15 Gev/c and hydrogen or nuclear target
- Maximum luminosity 2 ·10³² cm⁻² s⁻¹; interaction rate 2 ·10⁷ s⁻¹
- Continuous, triggerless readout

Physics program:

- High precision charmonium spectroscopy
- Search for hybrids and glueballs
- Study of exotic states (X, Y, Z)
- Nucleon structure
- Hyper-nuclear physics

The Micro Vertex Detector

- High resolution (<100 μ m) vertexing; good time resolution (<6 ns)
- Radiation tolerance up to $\sim 4 \cdot 10^{14} \text{ n}_{1\text{MeV eq}} \text{ /cm}^2$
- High rate capability $(2.10^7 \text{ pbar-p annihilations/s})$ and triggerless readout
- Low material budget (<10% radiation length overall)

Strip Disks

ASIC

Disk part:

- Trapezoidal sensors
- Stereo angle: 15° ۲
- Strip pitch: 67.5 µm ٠
- 512 channels per side ٠
- Supermodule: two corresponding sensors • on the two disks
- 2 disks at z = 155 and 215 mm, 24 sensors • per disk

Front-end ASIC

Strip Barrels

Barrel part:

- Rectangular (512 × 896 channels) and squared (512 × 512 channels) sensors
- Stereo angle: 90°, strip pitch 65 µm
- Two barrels at r = 92 and 125 mm
- 4 6 sensors on each of the 46 staves (248 sensors in total)

Strip Barrels – Stave Design I

Strip Barrels – Stave Design II

- Sandwich structure of carbon fiber (200 μm) and foam (2 mm)
- Up to 18 W dissipated on one stave
 → active water cooling
- Embedded cooling pipe in nickelcobalt alloy (2 mm diameter, 80 µm wall thickness)
- Carbon foam (POCO HTC) in the area around the cooling pipe

Strip Barrels – Stave Design III

- Large cutouts for the sensors
- Special design for top/bottom staves around the target pipe
- 6 different designs in total

• Waiting for a prototype complete with cooling pipe to perform thermal tests

Mechanical Integration

Complete half-detector

Global frame

Mechanical Integration – Strips

Strip Stave Powering

- DC-DC powering operating in B=2T
- 5 power domains per sensor
- up to 60 power supply cables per strip barrel stave (up to 4 m long)
- ~1500 converters for barrels + disks (+600 for pixel detector)
- MVD services routing is a crucial issue

SM01C converter (CERN development)

Hardware development

Front-end ASIC – I

Requirements to the strip front-end:

- Self-triggering
- Radiation hard up to 10 Mrad
- Power budget 1W/cm²
- Charge measurement
- Input rate up to 40 kHz
- Noise <1500 e⁻
- Fully digital outputs
- Sensor capacitance at the input $\sim 20 \text{ pF}$

 \rightarrow no chip available on the market which satisfies all these requirements

Front-end ASIC – II

New strip ASIC:

- Developed by INFN Torino with JLU Gießen and FZ Jülich
- Front-end adapted from ToPix (modified for larger input capacitance)
- Amplitude measurement with the Time-over-Threshold technique

- High resolution (~100 ps) time digitization with TDCs adapted from TOFPET
- Clock frequency 155.52 MHz
- Power budget: $\sim 4 \text{ mW} / \text{ch}$

First submission expected in some months

Sensor Characterization – Prototypes

Wafer properties:

- Fabricated at CiS, Germany
- FZ Si, 4" wafer
- Thickness: $285 \pm 10 \,\mu m$
- Resistivity: 2.3 ... 5 k Ω · cm
- Biasing: punch-through
- n-side insulation: p-spray

General sensor properties:

- Stereo angle: 90°
- Guard rings: 8
- Pitch: 65 μm or 50 μm
- Readout: 1 DC pad and 4 AC pads per strip

S1 (PANDA rectangular)

- 896 × 512 channels
- $58.3 \times 33.3 \text{ mm}^2$

S2 (PANDA squared)

- 512×512 channels
- $33.3 \times 33.3 \text{ mm}^2$

S4 ("Baby")

- 128×128 channels
- $8.4 \times 8.4 \text{ mm}^2$

See T. Quagli et al., IEEE NSS CR N14(219) (2012) 1365-1369

Sensor Characterization – Setup

Probe station

Test enclosure for connection of diodes

Fixed contact probe-card to connect all back-side strips

Sensor Characterization – S1 Sensor

Full depletion voltage	~ 55 V
Leakage current	~ 6μA @ 50 V
Bulk capacitance	680 pF
Interstrip capacitance	~ 10 pF @ 50 V
Coupling capacitance	> 45 pF/cm
C _{input}	9.8 ± 0.2 pF (p-side) 17.1 ± 0.4 pF (n-side)

Sensor Irradiations – I

Irradiation studies on S4 ("Baby") sensors

• Proton irradiations at the Bonn Isochronous Cyclotron

→ fluence between 10^{13} and 10^{15} n 1MeV eq /cm²

- Neutron low-fluence $(3 \cdot 10^{10} \text{ n 1 MeV eq / cm}^2)$ irradiation with Am-Be source
- Neutron high-fluence (1.6 ·10¹⁶ n 1MeV eq /cm²) irradiation at research reactor in Delft
- Annealing phase (80 minutes at 60°C)

Sensor Irradiations – II

- Full depletion voltage remains below 100 V at end of PANDA lifetime
- New sensor batch with polysilicon biasing is coming soon

Sensor Characterization – Beam Test

Squared sensor assembled on a test board and successfully tested at SPS, CERN (September 2012)

cluster charge, FE0

Strip Barrels – Hybrid Bus

- Connects the sensor and the front-end chips, adapting the pitch
- Distributes I/O signals (and possibly power) to the chips
- Reduced-scale prototype with APV25 readout chip produced

Strip Barrels – Hybrid Bus II

Proposal for the full hybrid layout

Chips-sensor fanout structure

Conclusions and Outlook

- The general design of the PANDA MVD is finalized.
- Development and validation of components is ongoing:
 - Front-end electronics under design;
 - First batch of sensors fully characterized;
 - Reduced-scale hybrid produced and under test.
- Some future steps:
 - Development of the readout chip;
 - Characterization of the new sensor technology;
 - Design and test of a full-scale hybrid;
 - Validation of the stave cooling system.

Thank you for your attention!

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

