

An Overview of the High Rate Low Radiation Length Micro-Vertex-Detector for the PANDA Experiment

6. September 2010 | Tobias Stockmanns

Main Physics Program

PANDA – AntiProton Annihilations at Darmstadt

Cooled antiproton beam up to 15 GeV/c on a fixed target

- $q\bar{q}$ potential in the charmonium system
 - precision measurements of $c\bar{c}$ -states (not only $J^{PC} = 1^{--}$) $c\bar{c}$ above $D\bar{D}$ -threshold \rightarrow D-meson tagging essential
- Spectroscopy of new charm states
- Search for Hybrids $q\bar{q}g$ and/or Glueballs gg
- Charmed and multi-strange baryon spectroscopy
- Electromagnetic processes (pp̄→e⁺e⁻, pp̄→γγ, Drell-Yan)
- Properties of single and double hypernuclei
- Properties of hadrons in nuclear matter

PANDA Spectrometer

Micro-Vertex-Detector

Requirements MVD

- Good spatial resolution in r-phi
- Good spatial resolution specially in z
- Good time resolution (O(10 ns))
- Amplitude measurement
- Modest radiation hardness (O(10¹⁴ n_{eq} / cm²))
- Triggerless readout
- Low material budget

- momentum measurement of soft pions from D* decays
 - → vertexing, D-tagging
 - → 'DC'-beam (2 10⁷ events/s)
 - improvement of resolution dE/dx to improve particle ID
 - ➔ depends on target material
 - ➔ no first level hardware trigger
 - Iow momentum particles energy resolution calorimeter

Schematic view of MVD

Detailed CAD Design

Pixel Support Structures

Mechanics

Lightweight support structures

MVD global support frame

Strip barrel layer support

- Sandwich structure: (Carbon – Rohacell[®] – Carbon)
- > 2 4 layers of carbon fibre (400 μ m)
- > < 0.17 − 0.26 % X/Xo</p>

6. September 2010

Folie 10

R = 137 mm

Hybrid Pixel Module

Pixel Sensors

Single Chip Sensor on ALICE pixel chip

Epitaxial Silicon Sensors with 50, 75, 100 μ m epi layer thickness, total sensor thickness 100 – 150 μ m

Epi Sensors

Front-End Electronics ToPix2 Testchip

Characterization of ToPix 2

Tobias Stockmanns

Pixel sensor prototypes with ToPix readout U JÜLICH

CAD Converter

Simulation model includes:

- all silicon components
- support structures
- cooling tubes
- cables, capacitors, resistors

• ...

PANDAroot simulation

MVD Material Budget

Radiation damage per operation year

Count rates

Data transmission

- 2 3 * 300 MBit/s serial links per FE
- 1 2 load balancing chips on each module with 1 GBit/s data transmission
- Aluminium cables with up to 2 GBit / s under study
- Detailed time ordered simulations ongoing

Techfab: 7µm Al on 50 µm Kapton CERN: 15 µm Al on 70 µm Kapton

Momentum and Track Resolution

ī and a

Vertex resolution

Summary

- The Micro-Vertex-Detector is one of the most challenging subdetectors within PANDA
- It faces the highest radiation load, highest hit rates, very stringent requirements on the radiation length and by far the highest number of readout channels
- In the course of the PANDA project a very sophisticated simulation software was (and is still) developed which allows us to optimize all different design parameters of the detector and do realistic simulations of the physics performance
- The hardware development is on a good track and we think that we have the necessary technologies at hand which allows us to build this detector. Nevertheless there is still a lot of work ahead of us

Support Structures Strips - Barrel

Tobias Stockmanns

Support Structures Strips - Disks

→ Background suppression for open charm channels impossible without MHDs Stockmanns

6. September 2010

Overall detector integration

Cooling

 \geq

 \geq

 \succ

 \succ

Cooling concept Barrel Coolant: Water (18°C) layer Vacuum-operated mode using hydrostatic pressure Active part: Micro fittings: \varnothing_{ext} 2 mm pipe Infrared 31°C Thermoplastic (Ni-Co alloy) image resin Upstream routing: \emptyset_{ext} 4 mm flexible 23°C plastic pipes **Thermal FEM analysis** Glue: Glue: Glue: Epo-Tek H70 Master Bond Artic Silver Test setup

MVD Coverage

Aim is to have on average 4 hit points per track to do independent tracking

Tobias Stockmanns

The PANDA Collaboration

More than 400 physicists from 55 institutions in 17 countries

U Basel **IHEP Beijing U** Bochum U Bonn U & INFN Brescia U & INFN Catania **U** Cracow **GSI** Darmstadt TU Dresden **JINR Dubna** (LIT, LPP, VBLHE) U Edinburgh U Erlangen **NWU Evanston** U & INFN Ferrara **U** Frankfurt **LNF-INFN** Frascati 6. September 2010

U & INFN Genova U Glasgow U Gießen **KVI** Groningen U Helsinki IKP Jülich I + II **U** Katowice IMP Lanzhou U Mainz U & Politecnico & INFN Milano U Minsk TU München **U** Münster **BINP Novosibirsk** LAL Orsay

U Pavia **IHEP** Protvino **PNPI** Gatchina U of Silesia U Stockholm **KTH Stockholm** U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste **U** Tübingen U & TSL Uppsala U Valencia SMI Vienna SINS Warsaw **U** Warsaw

 \bigcirc

