The PANDA MVD

Helmholtz International Center

Hans-Georg Zaunick II. Physikalisches Institut, JLU Gießen

The PANDA Detector @ FAIR

The Micro-Vertex Detector

- 2 barrel pixel layers
- 4 pixel disks
- 2 barrel strip layers
- 2 mixed disks
- 2 optional forward wheels (@40 & 60 cm)

Benchmark Channels

open charm: e.g. $\overline{p}p \rightarrow D^{\dagger}D^{\cdot} \rightarrow K^{\cdot}\pi^{\dagger}\pi^{\dagger}K^{\dagger}\pi^{\cdot}\pi^{\cdot}$

PANDARoot Simulations with detailed detector descriptions

Benchmark Channels

open charm: e.g. $\overline{p}p \rightarrow D^0\overline{D}^0 \rightarrow K_s\pi^*\pi^-K^*\pi^-$

Pixel Subdetector - Sensors

NIMA 594 (2008) p.29

INFN Torino

Epitaxial silicon pixel sensors

- Several thicknesses evaluated, 100 μm chosen for PANDA
- 100 x 100 μ m² pixel array
- Full qualification of prototypes done
- Full size PANDA geometry

Pixel Subdetector - Modules

INFN Torino

Pixel Subdetector - Front-end

INFN Torino

ToPix v2

- Torino Pixel Readout Chip, current version V3
- 2 x 128 + 2 x 32 double columns
- size 4 x 4.5 mm²
- Complete pixel cells with full column architechture, end-of-column logic and buffers
- Fully tested in lab and beam setups
- Next prototype ToPix v4 submitted, lab tests pending

ToPix v3

NIMA 596 (2008) p.96

Strip Subdetector - Setup

Strip Subdetector – Barrel Stave

Stave prototypes

ZEA Jülich

- Ultralight carbon foam moulded in carbon fiber form sheet reinforcements
- Integrated cooling pipe in more recent prototypes

Stave prototypes

Folding of PCB around stave to connect n-side and p-side r/o

1st prototyping run (CiS Erfurt) 2010 2nd prototyping run (CiS Erfurt) 2013

Silicon Strip Sensor Prototypes

- Full size PANDA geometry
- 285 µm thickness
- Strip pitches of 65 and 50 μm (barrel sensors)
- 67.5 μm pitch for trapezoidal fw sensors
- Punch-through biased and poly-Si biased

Sensor Probing and Prototype Assembly

Many sensor characterization capabilities available

"Probecard": fixed sensor assembly with all strips bonded to common lines (top and bottom) 20 Feb 2014 HG Zaunick **Probe Station**

Wafer diode test fixture

- All relevant parameters have to be monitored for QA
- → full sensor characterization required
- Analysis of irradiated sensors (p/n-irradiation)

20 Feb 2014 HG Zaunick

- All relevant parameters have to be monitored for QA
- \rightarrow full sensor characterization required
- Analysis of irradiated sensors (p/n-irradiation)

Irradiation with 14MeV Protons (Cyclotron Bonn)

Typical profile of hadronic lattice damage

20 Feb 2014 HG Zaunick

Flex PCBs

20 Feb 2014 HG Zaunick

Assembly of Prototype Sensors

Prototypes

APV25 Front-ends

Prototypes

Prototypes

Very successfully tested in testbeams @ COSY

Strip Frontend

Module Data Concentrator

Infrastructure - Readout

Thin Al-cables

- Thin kapton carrier
- Aluminum strips, 18 diff. pairs
- For data transmission out of the MVD
- Connect FEs/MDC to GBT receiver
- 320 Mbit/s serial links

GBT Project

20 Feb 2014 HG Zaunick

- E-link interface to on-detector node
- Optical link to the off-detector side

Infrastructure - Powering

DC-DC powering concept

- Air-coil converters operate inside strong magnetic fields
- >80% efficiency
- Converter developed at CERN for LHC upgrade

AMIS5MP DC/DC converter

20 Feb 2014 HG Zaunick

FE-n-D

Infrastructure - Cooling

- Water cooling system in depression mode
- Operating at room temperature
- Carbon foam embedded in staves: high thermal conductivity
- Dummy staves w/ thermal loads built up and scrutinized

Customized Thermal Test Resistors

20 Feb 2014 HG Zaunick

Numbers

- Number of sensors:
- Number of FEs:
- Number of channels:
- Number of DC-DC:
- Active area (m²):
- Cables off MVD:
- Cable cross section:
- Power dissipation:

