

TWEPP 2014

The ToPiX v4 prototype for the trigger-less readout of the PANDA Silicon Pixel Detector

<u>*G. Mazza^a*</u>, *D. Calvo^a*, *P. De Remigis^a*, *M. Mignone^a*, *J. Olave^{a,b}*, *A. Rivetti^a*, *R. Wheadon^a*

> ^a INFN sez. di Torino, Italy ^b DFS Università di Torino, Italy

TWEPP 2014 – Aix-en-Provence - September 23rd 2014

Outline

- * The PANDA Micro Vertex Detector
- Readout architecture
- * The ToPiX v4 ASIC
- * Test results
- Radiation test results
- * Conclusions

The PANDA experiment

Located at the new FAIR facility p-p and p-nucleous annihilation reaction Beam and target pipe *Triggerless experiment*

TWEPP 2014 – Aix-en-Provence - September 23rd 2014

PANDA MVD

Barrel :

Layer 1 : radius 28 mm, SPDs Layer 2 : radius 53 mm, SPDs Layer 3 : radius 92 mm, SSDs Layer 4 : radius 120 mm, SSDs Forward :

Disks 1-2 : radius 37.5 mm, SPDs

Disks 3-4 : radius 75 mm, SPDs

Disks 5-6 : radius 130 mm, SPDs + SSDs

TWEPP 2014 – Aix-en-Provence - September 23rd 2014

Pixel Detector

Pixel size	$100 \times 100 \ \mu m^2$		
Chip active area	11.4 × 11.6 mm² (116 rows, 110 columns)		
dE/dx measurement	ToT, 12 bits dynamic range		
Max input charge	50 fC		
Noise floor (PA noise)	<32 aC (200 e⁻)		
Input clock frequency	160 MHz		
Time resolution	6.25 ns (1.80 ns r.m.s.) 12.5 ns (3.61 ns r.m.s.)		
Power consumption	< 800 mW/cm ²		
Max event rate	$6.1 \cdot 10^{6}$		
Total ionizing dose	< 100 kGy		

Gianni Mazza

Module readout

TWEPP 2014 – Aix-en-Provence - September 23rd 2014

F/E schematic

TWEPP 2014 – Aix-en-Provence - September 23rd 2014

Pixel cell schematic

TWEPP 2014 – Aix-en-Provence - September 23rd 2014

Line driver

Bus capacitance : 49.9 fF/cell Bus resistance : 9.3 Ω/cell

Provides both reduced voltage swing and pre-emphasis or full voltage swing

J.C.Garcia, J.A.Montiel, S.Nooshabadi Adaptive Low/High Voltage Swing CMOS Driver for On-Chip Interconnects ISCAS 2007

TWEPP 2014 – Aix-en-Provence - September 23rd 2014

ToPiX readout architecture

Gianni Mazza

Data format

2	12	8		1	2	6	
01	Chip address	FC	1	Not used		ECC	Frame header packet
2	14		12		1	2	I
11	Pixel address	Lea	Leading edge time		Trailing	edge time	Data packet
2	16			16		6	
10	# of events			# of events CRC		ECC	Frame trailer packet
2	38						Puener
00	0 idle code (Hex 3A55AA55AA)					Idle packet	

TWEPP 2014 – Aix-en-Provence - September 23rd 2014

ToPiX v4

- Size : 3 mm × 6 mm
- * CMOS 130 nm
- * 640 pixel cells, 2×2×128 and 2×2×32 columns
- Hamming encoding and TMR pixel logic protection schemes
- * Clock frequency 160 MHz
- * SEU protected EoC
- Serial data output (SDR and DDR)
- * GBT-compatible SLVS I/O

TWEPP 2014 – Aix-en-Provence - September 23rd 2014

Simulated value : 0.226x + 0.084 Gianni Mazza

TWEPP 2014 – Aix-en-Provence - September 23rd 2014

Baseline & ToT

Baseline average value : 727 mV Baseline sigma : 0.73 mV TWE

IV TWEPP 2014 – Aix-en-Provence - September 23rd 2014

ToT sigma

Still some issues on the transmission of the data from the last pixels of the column Larger spread of the ToT (LSB's '0' preferred over '1') Increasing the power supply (from 1.2 V to 1.5 V) reduces the problem TMR slower than Hamming

Gianni Mazza

Supply current

Clock frequency [MHz]

Estimated power density for the full size version :

523 mW/cm² @ 80 MHz 666 mW/cm² @ 120 MHz 725 mW/cm² @ 160 MHz

```
Gianni Mazza
```


TWEPP 2014 – Aix-en-Provence - September 23rd 2014

TID measurements noise

S-curve sigma

ToT noise

TWEPP 2014 – Aix-en-Provence - September 23rd 2014

ToPiX v3

TWEPP 2014 – Aix-en-Provence - September 23rd 2014

SEU test (preliminary)

ToPiX pixel configuration registers

GBLD configuration registers

Gianni Mazza

Conclusions

- * The final prototype of the readout ASIC for the PANDA MVD pixel detector has been designed and tested.
- * Analogue performances satisfy the requirements.
- * Correct operation @ 160 MHz has been proven, albeit column data readout is at the limit some margin has to be added.
- * TID test just completed, v3 problems look solved.
- * SEU tests performed, data analysis ongoing.
- Prototypes have been sent for bump-bonding with the detector beam test foreseen for October 2014 in Jülich.
- * Full size ToPiX submission foreseen for 4th quarter 2015.

TWEPP 2014

Backup slides

Other features

Output frequency	160 Mb/s	320 Mb/s
Time stamp counter frequency	160 MHz	80 MHz
Time stamp mode	Binary	Gray
Idle packet	off	on
Analog timeout	off	оп
Detector type	n-type	p-type
SLVS current control	0000 (max)	1111 (off)
Driver pre-emphasis	off	on

Gianni Mazza

ToPiX v3 layout

- * 4.5 mm × 4 mm
- * CMOS 130 nm
- * Clock frequency 160 MHz
- bump bonding pads
- * 2×2×128 columns
- * 2×2×32 columns
- * 32 cells EoC FIFO
- * SEU protected EoC
- * Serial data output
- * SLVS I/O