

DPG Frühjahrstagung Hadronen und Kerne Bonn, March 16, 2010

Thomas Würschig

The Micro-Vertex-Detector (MVD) of the PANDA experiment *

* supported by BMBF and EU FP6 DIRAC Secondary Beams

Outline

- Introduction
- Detector development
 - > Implementation
 - Hardware
 development
 - Mechanics aspects
- Simulation
- Summary

DPG Frühjahrstagung, HK 21, Bonn, March 16, 2010 Thomas Würschig, The Micro-Vertex-Detector (MVD) of the PANDA experiment

- 3 -

• **panda** - Physics program

- > Study of charmonium systems: $q\bar{q}$ potential models
 - \rightarrow Precision measurements below and above DD threshold
 - \rightarrow Discovery potential for new states
- Search for exotic QCD states (glueballs, hybrids)
- > Charmed and multi-strange spectroscopy
- > Electromagnetic processes ($p\bar{p} \rightarrow e^+e^- / \gamma\gamma$, Drell Yan)
- > Properties of single and double hypernuclei
- > Properties of hadrons in nuclear matter
 - \rightarrow M. Fritsch HK 13.2

• **panda** - Experiment

- Fixed target experiment
- Frozen hydrogen and heavier nuclear targets (e.g. Gold)
- Pellet target / Cluster-jet target
- > Design parameters

universität

- a) High luminosity: $L = 2 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \Leftrightarrow \Delta p/p < 10^{-4}$
- b) High resolution: $L = 10^{31} \text{ cm}^{-2} \text{ s}^{-1} \Leftrightarrow \Delta p/p < 4 \cdot 10^{-5}$ Beam momentum: (1.5 ... 15) GeV / c
- → Interaction rate: $2 \cdot 10^7$ events / s
- → Non-ordered time structure

- **panda** Experiment: Particle distribution
 - > Enhanced emission in forward direction

universität**bonn**

Low-energetic particles (< 1 GeV/c) in full polar angle</p>

- **panda** Experiment: Particle distribution
 - Enhanced emission in forward direction (light targets)
 - Low-energetic particles (< 1 GeV/c) over full polar angle</p>

General description

- Micro-Vertex-Detector (MVD)
 - Tracking detector for charged particles
 - Innermost detector in PANDA
 - Main tasks:
 - (1) High vertex resolution for primary interaction vertex and secondary vertices of short lived particles and delayed decays
 - (2) Improvement of momentum resolution
 - (3) Additional input for particle-ID

cτ = 312 μm

- Good spatial resolution and high spatial coverage
 - > r-phi ↔ Momentum measurement (e.g. soft pions D* decay)
 - > $z \leftrightarrow$ Vertexing, D-tagging
- Good time resolution (< 10 ns) \leftrightarrow Quasi continuous beam
- Amplitude measurements ↔ Improvement of spatial resolution and PID
- Radiation tolerance (~10¹⁴ n_{eq (1 MeV)} cm⁻² / 10 years)
- Triggerless readout ↔ No first level hardware trigger
- Low material budget

General layout

- Micro-Vertex-Detector (MVD)
 - Central part:Four barrel layers
 - Forward part:Six disk layers
 - > Detector types:
 - Pixel sensors
 - Double-sided microstrip sensors

- Micro-Vertex-Detector (MVD)
 - Central part:
 Four barrel layer
 - Forward part:
 Six disk layer
 - > Detector types:
 - Pixel sensors
 - Double sided microstrip sensors
 - **Readout channels:**
 - ~ 12 million (pixel)
 - ~ 200.000 (strip)

universität**bonn**

universität**bonn**

Hybridization: Pixel module

- Pixel sensor
 - > Specifications
 - ✓ Epi-Silicon layer: (50 ... 100) μm
 - \checkmark Thinned substrate: ~ 50 μm
 - Alt.: Thinned oxygen enriched silicon
 - Measurements
 - Sensor characterization

◆ Epi-50 ■ Epi-75 ▲ Epi-100

10

1 year

Radiation damage test (neutrons)

20

3 year

30

Neutron flux Φ_{eq} [10¹³ cm⁻²]

100

80

60

40

Full depletion voltage [V]

Before

irradiation

DPG Frühjahrstagung, HK 21, Bonn, March 16, 2010 Thomas Würschig, The Micro-Vertex-Detector (MVD) of the PANDA experiment

60

50

10 year PANDA lifetime

12 7 12

reg

ø

90

9

reg

Ŭ,

12

20 30 40 12 7 12

 \checkmark

 \triangleright

 \checkmark

DPG Frühjahrstagung, HK 21, Bonn, March 16, 2010 Thomas Würschig, The Micro-Vertex-Detector (MVD) of the PANDA experiment

- 18 -

100

Annealing time (hours)

Board 00

Board 01

Board 00

Board 01 Board H

200

Board H

- ToPix readout chip
 - Specifications
 - Time over threshold technique for untriggered readout
 - CMOS 130 nm technology
 - ✓ 100 × 100 pixel matrix (100 × 100 µm² cell size)
 - Low power consumption (< 500 mW/cm²)
 - Measurements
 - Testing procedures
 - Total ionizing dose test
 - ToPix prototype connected to epi-sensor

ToPix + epitaxial sensor

- Strip sensor
 - Shape: Trapezoidal (disk) Rectangular (barrel)
 - Readout: Pitch / stereo angle:

130 μm / 90° (barrel) 70 μm / 15° (disk)

DPG Frühjahrstagung, HK 21, Bonn, March 16, 2010 Thomas Würschig, The Micro-Vertex-Detector (MVD) of the PANDA experiment

- 22 -

DPG Frühjahrstagung, HK 21, Bonn, March 16, 2010 Thomas Würschig, The Micro-Vertex-Detector (MVD) of the PANDA experiment

- 23 -

universität**bonn** T

DPG Frühjahrstagung, HK 21, Bonn, March 16, 2010 Thomas Würschig, The Micro-Vertex-Detector (MVD) of the PANDA experiment

- 24 -

DPG Frühjahrstagung, HK 21, Bonn, March 16, 2010 Thomas Würschig, The Micro-Vertex-Detector (MVD) of the PANDA experiment

- 25 -

Overall detector integration

Global frame

Carbon fibre structure

Central support frame

- 3 point fixation to central support frame
- 2 half frames
- Integration of all MVD parts
- Prototype commissioned

Carbon structures

- > Stiffening structure:
 - 2 layers of carbon fibre (400 µm)

•

Routing concept

Routing concept

- "Packets" for individual modules
- > Upstream routing along beam pipe
- > Dedicated routing for pixel disks

Routing concept

Count rate studies

- Maximum count rates / frontend: ~ 10⁶ Evts / s
- > Anisotropic distribution

Integrated rate over all frontends: ~ 3 Gevts / s

- Spatial coverage
 - > 2D mapping: Number of MVD points / track

- Spatial coverage
 - > 2D mapping: Number of MVD points / track

- No significant effect for particle ↔ antiparticle
- No significant energy dependence
- No significant effect for different particle species
 - → S. Bianco HK 43.6

Radiation length studies (Geantino)
 2D mapping of overall material budget

- More isotropic in barrel part
- Anisotropic routing of pixel disks
- Hotspots in upstream region

DPG Frühjahrstagung, HK 21, Bonn, March 16, 2010 Thomas Würschig, The Micro-Vertex-Detector (MVD) of the PANDA experiment

- 41 -

- Radiation length studies (Geantino)
 - > 1D profile scan for polar angle

DPG Frühjahrstagung, HK 21, Bonn, March 16, 2010 Thomas Würschig, The Micro-Vertex-Detector (MVD) of the PANDA experiment

- 43 -

DPG Frühjahrstagung, HK 21, Bonn, March 16, 2010 Thomas Würschig, The Micro-Vertex-Detector (MVD) of the PANDA experiment

universität**bonn**

- 44 -

- Vertex resolution $\bar{p}p \rightarrow D^+D^-$ (6.57 / 7.50 / 8.50) GeV/c

$\begin{array}{c} \text{momentum} \\ GeV/c \end{array}$	vertex resolution $[\mu m]$ primary secondary						\rightarrow Primary and secondary
6.57	$\sigma_{prim,x}$	$\sigma_{prim,y}$	$\sigma_{prim,z}$	$\sigma_{sec,x}$	$\sigma_{sec,y}$	$\sigma_{sec,z}$	vertex resolution:
0.57 7.50	$\frac{30.7}{30.4}$	$\frac{30.7}{30.3}$	493.0 208.5	37.1	$\frac{55.2}{36.4}$	84.0	σ_{x,y} ≤ 35 μm
8.50	30.0	29.0	157.4	36.7	36.2	92.4	σ _z ≤100 μm

→ R. Jäkel PhD thesis

DPG Frühjahrstagung, HK 21, Bonn, March 16, 2010 Thomas Würschig, The Micro-Vertex-Detector (MVD) of the PANDA experiment

- 46 -

- Advanced stage of MVD detector development
- Start of prototyping
- Parallel software development to check physics performance
- Still some challenging tasks ahead ...

Institutes and members

<u>K.-Th. Brinkmann</u>, M. Becker, S. Bianco, *R. Jäkel*, R. Kliemt, K. Koop, R. Schnell, T. Würschig, H.-G. Zaunick

D. Calvo, P. De Remigis, B. Giraudo, S. Coli, T. Kugathasan, G. Mazza, A. Rivetti, R. Wheadon, L. Zotti

<u>T. Stockmanns</u>, L. Atar, D. Grunwald, H. Kleines, D. Pohl, M. Mertens, J. Ritman

MVD: Active detector volumes only

MVD: Detailed CAD model

